summaryrefslogtreecommitdiff
path: root/vm.c
diff options
context:
space:
mode:
authorFrans Kaashoek <[email protected]>2018-09-23 08:24:42 -0400
committerFrans Kaashoek <[email protected]>2018-09-23 08:35:30 -0400
commitab0db651af6f1ffa8fe96909ce16ae314d65c3fb (patch)
treec429f8ee36fa7da1e25f564a160b031613ca05e9 /vm.c
parentb818915f793cd20c5d1e24f668534a9d690f3cc8 (diff)
downloadxv6-labs-ab0db651af6f1ffa8fe96909ce16ae314d65c3fb.tar.gz
xv6-labs-ab0db651af6f1ffa8fe96909ce16ae314d65c3fb.tar.bz2
xv6-labs-ab0db651af6f1ffa8fe96909ce16ae314d65c3fb.zip
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit addresses, but is a different processor. For example, calling conventions, system calls, and segmentation are different from 32-bit x86. Segmentation is basically gone, but gs/fs in combination with MSRs can be used to hold a per-core pointer. In general, x86-64 is more straightforward than 32-bit x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch. A summary of the changes is as follows: - Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu), because xv6's boot loader doesn't understand 64bit ELF files. And, we don't care anymore about booting. - Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img, bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than MAXFILE! - Update gdb.tmpl to be for i386 or x86-64 - Console/printf: use stdarg.h and treat 64-bit addresses different from ints (32-bit) - Update elfhdr to be 64 bit - entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page table in 32-bit mode before switching to 64-bit mode, share code for entering boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state mostly disappear.) - exec.c: fix passing argv (64-bit now instead of 32-bit). - initcode.c: use syscall instead of int. - kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of address space! - proc.c: initial return is through new syscall path instead of trapret. - proc.h: update struct cpu to have some scratch space since syscall saves less state than int, update struct context to reflect x86-64 calling conventions. - swtch: simplify for x86-64 calling conventions. - syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are passed through registers), and fetchaddr to read a 64-bit value from user space. - sysfile: update to handle pointers from user space (e.g., sys_exec), which are 64 bits. - trap.c: no special trap vector for sys calls, because x86-64 has a different plan for system calls. - trapasm: one plan for syscalls and one plan for traps (interrupt and exceptions). On x86-64, the kernel is responsible for switching user/kernel stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR GS_KERN_BASE to point to the core's cpu structure (using swapgs). - types.h: add uint64, and change pde_t to uint64 - usertests: exit() when fork fails, which helped in tracking down one of the bugs in the switch from 32-bit to 64-bit - vectors: update to make them 64 bits - vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task segment to set kernel stack for interrupts (but simpler than in 32-bit mode), add an extra argument to freevm (size of user part of address space) to avoid checking all entries till KERNBASE (there are MANY TB before the top 1TB). - x86: update trapframe to have 64-bit entries, which is what the processor pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr, which needs the gcc directives packed and aligned. TODO: - use int32 instead of int? - simplify curproc(). xv6 has per-cpu state again, but this time it must have it. - avoid repetition in walkpgdir - fix validateint() in usertests.c - fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
Diffstat (limited to 'vm.c')
-rw-r--r--vm.c213
1 files changed, 150 insertions, 63 deletions
diff --git a/vm.c b/vm.c
index 7134cff..fb0cc33 100644
--- a/vm.c
+++ b/vm.c
@@ -2,13 +2,34 @@
#include "types.h"
#include "defs.h"
#include "x86.h"
+#include "msr.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "elf.h"
+#include "traps.h"
extern char data[]; // defined by kernel.ld
-pde_t *kpgdir; // for use in scheduler()
+void sysentry(void);
+
+static pde_t *kpml4; // kernel address space, used by scheduler and bootup
+
+// Bootstrap GDT. Used by boot.S but defined in C
+// Map "logical" addresses to virtual addresses using identity map.
+// Cannot share a CODE descriptor for both kernel and user
+// because it would have to have DPL_USR, but the CPU forbids
+// an interrupt from CPL=0 to DPL=3.
+struct segdesc bootgdt[NSEGS] = {
+ [0] = SEGDESC(0, 0, 0), // null
+ [1] = SEGDESC(0, 0xfffff, SEG_R|SEG_CODE|SEG_S|SEG_DPL(0)|SEG_P|SEG_D|SEG_G), // 32-bit kernel code
+ [2] = SEGDESC(0, 0, SEG_R|SEG_CODE|SEG_S|SEG_DPL(0)|SEG_P|SEG_L|SEG_G), // 64-bit kernel code
+ [3] = SEGDESC(0, 0xfffff, SEG_W|SEG_S|SEG_DPL(0)|SEG_P|SEG_D|SEG_G), // kernel data
+ // The order of the user data and user code segments is
+ // important for syscall instructions. See initseg.
+ [6] = SEGDESC(0, 0xfffff, SEG_W|SEG_S|SEG_DPL(3)|SEG_P|SEG_D|SEG_G), // 64-bit user data
+ [7] = SEGDESC(0, 0, SEG_R|SEG_CODE|SEG_S|SEG_DPL(3)|SEG_P|SEG_L|SEG_G), // 64-bit user code
+};
+
// Set up CPU's kernel segment descriptors.
// Run once on entry on each CPU.
@@ -16,41 +37,82 @@ void
seginit(void)
{
struct cpu *c;
-
- // Map "logical" addresses to virtual addresses using identity map.
- // Cannot share a CODE descriptor for both kernel and user
- // because it would have to have DPL_USR, but the CPU forbids
- // an interrupt from CPL=0 to DPL=3.
- c = &cpus[cpuid()];
- c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
- c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
- c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
- c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
- lgdt(c->gdt, sizeof(c->gdt));
+ struct desctr dtr;
+
+ c = mycpu();
+ memmove(c->gdt, bootgdt, sizeof bootgdt);
+ dtr.limit = sizeof(c->gdt)-1;
+ dtr.base = (uint64) c->gdt;
+ lgdt((void *)&dtr.limit);
+
+ // When executing a syscall instruction the CPU sets the SS selector
+ // to (star >> 32) + 8 and the CS selector to (star >> 32).
+ // When executing a sysret instruction the CPU sets the SS selector
+ // to (star >> 48) + 8 and the CS selector to (star >> 48) + 16.
+ uint64 star = ((((uint64)UCSEG|0x3)- 16)<<48)|((uint64)(KCSEG)<<32);
+ writemsr(MSR_STAR, star);
+ writemsr(MSR_LSTAR, (uint64)&sysentry);
+ writemsr(MSR_SFMASK, FL_TF | FL_IF);
+
+ // Initialize cpu-local storage.
+ writegs(KDSEG);
+ writemsr(MSR_GS_BASE, (uint64)c);
+ writemsr(MSR_GS_KERNBASE, (uint64)c);
}
// Return the address of the PTE in page table pgdir
// that corresponds to virtual address va. If alloc!=0,
// create any required page table pages.
static pte_t *
-walkpgdir(pde_t *pgdir, const void *va, int alloc)
+walkpgdir(pde_t *pml4, const void *va, int alloc)
{
+ pml4e_t *pml4e;
+ pdpe_t *pdp;
+ pdpe_t *pdpe;
pde_t *pde;
+ pde_t *pd;
pte_t *pgtab;
- pde = &pgdir[PDX(va)];
- if(*pde & PTE_P){
- pgtab = (pte_t*)P2V(PTE_ADDR(*pde));
- } else {
- if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
+ // level 4
+ pml4e = &pml4[PMX(va)];
+ if(*pml4e & PTE_P)
+ pdp = (pdpe_t*)P2V(PTE_ADDR(*pml4e));
+ else {
+ if(!alloc || (pdp = (pdpe_t*)kalloc()) == 0)
return 0;
// Make sure all those PTE_P bits are zero.
- memset(pgtab, 0, PGSIZE);
+ memset(pdp, 0, PGSIZE);
// The permissions here are overly generous, but they can
// be further restricted by the permissions in the page table
// entries, if necessary.
+ *pml4e = V2P(pdp) | PTE_P | PTE_W | PTE_U;
+ }
+
+ // XXX avoid repetition
+
+ // level 3
+ pdpe = &pdp[PDPX(va)];
+ if(*pdpe & PTE_P)
+ pd = (pde_t*)P2V(PTE_ADDR(*pdpe));
+ else {
+ if(!alloc || (pd = (pde_t*)kalloc()) == 0)
+ return 0;
+ memset(pd, 0, PGSIZE);
+ *pdpe = V2P(pd) | PTE_P | PTE_W | PTE_U;
+ }
+
+ // level 2
+ pde = &pd[PDX(va)];
+ if(*pde & PTE_P)
+ pgtab = (pte_t*)P2V(PTE_ADDR(*pde));
+ else {
+ if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
+ return 0;
+ memset(pgtab, 0, PGSIZE);
*pde = V2P(pgtab) | PTE_P | PTE_W | PTE_U;
}
+
+ // level 1
return &pgtab[PTX(va)];
}
@@ -58,13 +120,13 @@ walkpgdir(pde_t *pgdir, const void *va, int alloc)
// physical addresses starting at pa. va and size might not
// be page-aligned.
static int
-mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
+mappages(pde_t *pgdir, void *va, uint64 size, uint64 pa, int perm)
{
char *a, *last;
pte_t *pte;
- a = (char*)PGROUNDDOWN((uint)va);
- last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
+ a = (char*)PGROUNDDOWN((uint64)va);
+ last = (char*)PGROUNDDOWN(((uint64)va) + size - 1);
for(;;){
if((pte = walkpgdir(pgdir, a, 1)) == 0)
return -1;
@@ -80,7 +142,7 @@ mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
}
// There is one page table per process, plus one that's used when
-// a CPU is not running any process (kpgdir). The kernel uses the
+// a CPU is not running any process (kpml4). The kernel uses the
// current process's page table during system calls and interrupts;
// page protection bits prevent user code from using the kernel's
// mappings.
@@ -104,35 +166,36 @@ mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
// every process's page table.
static struct kmap {
void *virt;
- uint phys_start;
- uint phys_end;
+ uint64 phys_start;
+ uint64 phys_end;
int perm;
} kmap[] = {
{ (void*)KERNBASE, 0, EXTMEM, PTE_W}, // I/O space
{ (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0}, // kern text+rodata
{ (void*)data, V2P(data), PHYSTOP, PTE_W}, // kern data+memory
- { (void*)DEVSPACE, DEVSPACE, 0, PTE_W}, // more devices
+ { (void*)P2V(DEVSPACE), DEVSPACE, DEVSPACETOP, PTE_W}, // more devices
};
// Set up kernel part of a page table.
pde_t*
setupkvm(void)
{
- pde_t *pgdir;
+ pde_t *pml4;
struct kmap *k;
- if((pgdir = (pde_t*)kalloc()) == 0)
+ if((pml4 = (pde_t*)kalloc()) == 0)
return 0;
- memset(pgdir, 0, PGSIZE);
- if (P2V(PHYSTOP) > (void*)DEVSPACE)
+ memset(pml4, 0, PGSIZE);
+ if (PHYSTOP > DEVSPACE)
panic("PHYSTOP too high");
- for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
- if(mappages(pgdir, k->virt, k->phys_end - k->phys_start,
+ for(k = kmap; k < &kmap[NELEM(kmap)]; k++) {
+ if(mappages(pml4, k->virt, k->phys_end - k->phys_start,
(uint)k->phys_start, k->perm) < 0) {
- freevm(pgdir);
+ freevm(pml4, 0);
return 0;
}
- return pgdir;
+ }
+ return pml4;
}
// Allocate one page table for the machine for the kernel address
@@ -140,7 +203,7 @@ setupkvm(void)
void
kvmalloc(void)
{
- kpgdir = setupkvm();
+ kpml4 = setupkvm();
switchkvm();
}
@@ -149,13 +212,17 @@ kvmalloc(void)
void
switchkvm(void)
{
- lcr3(V2P(kpgdir)); // switch to the kernel page table
+ lcr3(V2P(kpml4)); // switch to the kernel page table
}
+
// Switch TSS and h/w page table to correspond to process p.
void
switchuvm(struct proc *p)
{
+ struct desctr dtr;
+ struct cpu *c;
+
if(p == 0)
panic("switchuvm: no process");
if(p->kstack == 0)
@@ -164,16 +231,22 @@ switchuvm(struct proc *p)
panic("switchuvm: no pgdir");
pushcli();
- mycpu()->gdt[SEG_TSS] = SEG16(STS_T32A, &mycpu()->ts,
- sizeof(mycpu()->ts)-1, 0);
- mycpu()->gdt[SEG_TSS].s = 0;
- mycpu()->ts.ss0 = SEG_KDATA << 3;
- mycpu()->ts.esp0 = (uint)p->kstack + KSTACKSIZE;
- // setting IOPL=0 in eflags *and* iomb beyond the tss segment limit
- // forbids I/O instructions (e.g., inb and outb) from user space
- mycpu()->ts.iomb = (ushort) 0xFFFF;
- ltr(SEG_TSS << 3);
+
+ c = mycpu();
+ uint64 base = (uint64) &(c->ts);
+ c->gdt[TSSSEG>>3] = SEGDESC(base, (sizeof(c->ts)-1), SEG_P|SEG_TSS64A);
+ c->gdt[(TSSSEG>>3)+1] = SEGDESCHI(base);
+ c->ts.rsp[0] = (uint64) p->kstack + KSTACKSIZE;
+ c->ts.iomba = (ushort) 0xFFFF;
+
+ dtr.limit = sizeof(c->gdt) - 1;
+ dtr.base = (uint64)c->gdt;
+ lgdt((void *)&dtr.limit);
+
+ ltr(TSSSEG);
+
lcr3(V2P(p->pgdir)); // switch to process's address space
+
popcli();
}
@@ -197,10 +270,11 @@ inituvm(pde_t *pgdir, char *init, uint sz)
int
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
- uint i, pa, n;
+ uint i, n;
+ uint64 pa;
pte_t *pte;
- if((uint) addr % PGSIZE != 0)
+ if((uint64) addr % PGSIZE != 0)
panic("loaduvm: addr must be page aligned");
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)
@@ -222,7 +296,7 @@ int
allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
{
char *mem;
- uint a;
+ uint64 a;
if(newsz >= KERNBASE)
return 0;
@@ -233,13 +307,11 @@ allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
for(; a < newsz; a += PGSIZE){
mem = kalloc();
if(mem == 0){
- cprintf("allocuvm out of memory\n");
deallocuvm(pgdir, newsz, oldsz);
return 0;
}
memset(mem, 0, PGSIZE);
if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){
- cprintf("allocuvm out of memory (2)\n");
deallocuvm(pgdir, newsz, oldsz);
kfree(mem);
return 0;
@@ -253,10 +325,10 @@ allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
// need to be less than oldsz. oldsz can be larger than the actual
// process size. Returns the new process size.
int
-deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
+deallocuvm(pde_t *pgdir, uint64 oldsz, uint64 newsz)
{
pte_t *pte;
- uint a, pa;
+ uint64 a, pa;
if(newsz >= oldsz)
return oldsz;
@@ -281,20 +353,34 @@ deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
// Free a page table and all the physical memory pages
// in the user part.
void
-freevm(pde_t *pgdir)
+freevm(pde_t *pml4, uint64 sz)
{
- uint i;
+ uint i, j, k;
+ pde_t *pdp, *pd, *pt;
- if(pgdir == 0)
+ if(pml4 == 0)
panic("freevm: no pgdir");
- deallocuvm(pgdir, KERNBASE, 0);
+
+ deallocuvm(pml4, sz, 0);
for(i = 0; i < NPDENTRIES; i++){
- if(pgdir[i] & PTE_P){
- char * v = P2V(PTE_ADDR(pgdir[i]));
- kfree(v);
+ if(pml4[i] & PTE_P){
+ pdp = (pdpe_t*)P2V(PTE_ADDR(pml4[i]));
+ for(j = 0; j < NPDENTRIES; j++){
+ if(pdp[j] & PTE_P){
+ pd = (pde_t*)P2V(PTE_ADDR(pdp[j]));
+ for(k = 0; k < NPDENTRIES; k++){
+ if(pd[k] & PTE_P) {
+ pt = (pde_t*)P2V(PTE_ADDR(pd[k]));
+ kfree((char*)pt);
+ }
+ }
+ kfree((char*)pd);
+ }
+ }
+ kfree((char*)pdp);
}
}
- kfree((char*)pgdir);
+ kfree((char*)pml4);
}
// Clear PTE_U on a page. Used to create an inaccessible
@@ -317,7 +403,8 @@ copyuvm(pde_t *pgdir, uint sz)
{
pde_t *d;
pte_t *pte;
- uint pa, i, flags;
+ uint64 pa, i;
+ uint flags;
char *mem;
if((d = setupkvm()) == 0)
@@ -340,7 +427,7 @@ copyuvm(pde_t *pgdir, uint sz)
return d;
bad:
- freevm(d);
+ freevm(d, sz);
return 0;
}
@@ -366,7 +453,7 @@ int
copyout(pde_t *pgdir, uint va, void *p, uint len)
{
char *buf, *pa0;
- uint n, va0;
+ uint64 n, va0;
buf = (char*)p;
while(len > 0){