diff options
author | rsc <rsc> | 2008-09-03 04:50:04 +0000 |
---|---|---|
committer | rsc <rsc> | 2008-09-03 04:50:04 +0000 |
commit | f53494c28e362fb7752bbc83417b9ba47cff0bf5 (patch) | |
tree | 7a7474710c9553b0188796ba24ae3af992320153 /web/l-threads.html | |
parent | ee3f75f229742a376bedafe34d0ba04995a942be (diff) | |
download | xv6-labs-f53494c28e362fb7752bbc83417b9ba47cff0bf5.tar.gz xv6-labs-f53494c28e362fb7752bbc83417b9ba47cff0bf5.tar.bz2 xv6-labs-f53494c28e362fb7752bbc83417b9ba47cff0bf5.zip |
DO NOT MAIL: xv6 web pages
Diffstat (limited to 'web/l-threads.html')
-rw-r--r-- | web/l-threads.html | 316 |
1 files changed, 316 insertions, 0 deletions
diff --git a/web/l-threads.html b/web/l-threads.html new file mode 100644 index 0000000..8587abb --- /dev/null +++ b/web/l-threads.html @@ -0,0 +1,316 @@ +<title>L8</title> +<html> +<head> +</head> +<body> + +<h1>Threads, processes, and context switching</h1> + +<p>Required reading: proc.c (focus on scheduler() and sched()), +setjmp.S, and sys_fork (in sysproc.c) + +<h2>Overview</h2> + + +<p>Big picture: more programs than processors. How to share the +limited number of processors among the programs? + +<p>Observation: most programs don't need the processor continuously, +because they frequently have to wait for input (from user, disk, +network, etc.) + +<p>Idea: when one program must wait, it releases the processor, and +gives it to another program. + +<p>Mechanism: thread of computation, an active active computation. A +thread is an abstraction that contains the minimal state that is +necessary to stop an active and an resume it at some point later. +What that state is depends on the processor. On x86, it is the +processor registers (see setjmp.S). + +<p>Address spaces and threads: address spaces and threads are in +principle independent concepts. One can switch from one thread to +another thread in the same address space, or one can switch from one +thread to another thread in another address space. Example: in xv6, +one switches address spaces by switching segmentation registers (see +setupsegs). Does xv6 ever switch from one thread to another in the +same address space? (Answer: yes, v6 switches, for example, from the +scheduler, proc[0], to the kernel part of init, proc[1].) In the JOS +kernel we switch from the kernel thread to a user thread, but we don't +switch kernel space necessarily. + +<p>Process: one address space plus one or more threads of computation. +In xv6 all <i>user</i> programs contain one thread of computation and +one address space, and the concepts of address space and threads of +computation are not separated but bundled together in the concept of a +process. When switching from the kernel program (which has multiple +threads) to a user program, xv6 switches threads (switching from a +kernel stack to a user stack) and address spaces (the hardware uses +the kernel segment registers and the user segment registers). + +<p>xv6 supports the following operations on processes: +<ul> +<li>fork; create a new process, which is a copy of the parent. +<li>exec; execute a program +<li>exit: terminte process +<li>wait: wait for a process to terminate +<li>kill: kill process +<li>sbrk: grow the address space of a process. +</ul> +This interfaces doesn't separate threads and address spaces. For +example, with this interface one cannot create additional threads in +the same threads. Modern Unixes provides additional primitives +(called pthreads, POSIX threads) to create additional threads in a +process and coordinate their activities. + +<p>Scheduling. The thread manager needs a method for deciding which +thread to run if multiple threads are runnable. The xv6 policy is to +run the processes round robin. Why round robin? What other methods +can you imagine? + +<p>Preemptive scheduling. To force a thread to release the processor +periodically (in case the thread never calls sleep), a thread manager +can use preemptive scheduling. The thread manager uses the clock chip +to generate periodically a hardware interrupt, which will cause +control to transfer to the thread manager, which then can decide to +run another thread (e.g., see trap.c). + +<h2>xv6 code examples</h2> + +<p>Thread switching is implemented in xv6 using setjmp and longjmp, +which take a jumpbuf as an argument. setjmp saves its context in a +jumpbuf for later use by longjmp. longjmp restores the context saved +by the last setjmp. It then causes execution to continue as if the +call of setjmp has just returned 1. +<ul> +<li>setjmp saves: ebx, exc, edx, esi, edi, esp, ebp, and eip. +<li>longjmp restores them, and puts 1 in eax! +</ul> + +<p> Example of thread switching: proc[0] switches to scheduler: +<ul> +<li>1359: proc[0] calls iget, which calls sleep, which calls sched. +<li>2261: The stack before the call to setjmp in sched is: +<pre> +CPU 0: +eax: 0x10a144 1089860 +ecx: 0x6c65746e 1818588270 +edx: 0x0 0 +ebx: 0x10a0e0 1089760 +esp: 0x210ea8 2166440 +ebp: 0x210ebc 2166460 +esi: 0x107f20 1081120 +edi: 0x107740 1079104 +eip: 0x1023c9 +eflags 0x12 +cs: 0x8 +ss: 0x10 +ds: 0x10 +es: 0x10 +fs: 0x10 +gs: 0x10 + 00210ea8 [00210ea8] 10111e + 00210eac [00210eac] 210ebc + 00210eb0 [00210eb0] 10239e + 00210eb4 [00210eb4] 0001 + 00210eb8 [00210eb8] 10a0e0 + 00210ebc [00210ebc] 210edc + 00210ec0 [00210ec0] 1024ce + 00210ec4 [00210ec4] 1010101 + 00210ec8 [00210ec8] 1010101 + 00210ecc [00210ecc] 1010101 + 00210ed0 [00210ed0] 107740 + 00210ed4 [00210ed4] 0001 + 00210ed8 [00210ed8] 10cd74 + 00210edc [00210edc] 210f1c + 00210ee0 [00210ee0] 100bbc + 00210ee4 [00210ee4] 107740 +</pre> +<li>2517: stack at beginning of setjmp: +<pre> +CPU 0: +eax: 0x10a144 1089860 +ecx: 0x6c65746e 1818588270 +edx: 0x0 0 +ebx: 0x10a0e0 1089760 +esp: 0x210ea0 2166432 +ebp: 0x210ebc 2166460 +esi: 0x107f20 1081120 +edi: 0x107740 1079104 +eip: 0x102848 +eflags 0x12 +cs: 0x8 +ss: 0x10 +ds: 0x10 +es: 0x10 +fs: 0x10 +gs: 0x10 + 00210ea0 [00210ea0] 1023cf <--- return address (sched) + 00210ea4 [00210ea4] 10a144 + 00210ea8 [00210ea8] 10111e + 00210eac [00210eac] 210ebc + 00210eb0 [00210eb0] 10239e + 00210eb4 [00210eb4] 0001 + 00210eb8 [00210eb8] 10a0e0 + 00210ebc [00210ebc] 210edc + 00210ec0 [00210ec0] 1024ce + 00210ec4 [00210ec4] 1010101 + 00210ec8 [00210ec8] 1010101 + 00210ecc [00210ecc] 1010101 + 00210ed0 [00210ed0] 107740 + 00210ed4 [00210ed4] 0001 + 00210ed8 [00210ed8] 10cd74 + 00210edc [00210edc] 210f1c +</pre> +<li>2519: What is saved in jmpbuf of proc[0]? +<li>2529: return 0! +<li>2534: What is in jmpbuf of cpu 0? The stack is as follows: +<pre> +CPU 0: +eax: 0x0 0 +ecx: 0x6c65746e 1818588270 +edx: 0x108aa4 1084068 +ebx: 0x10a0e0 1089760 +esp: 0x210ea0 2166432 +ebp: 0x210ebc 2166460 +esi: 0x107f20 1081120 +edi: 0x107740 1079104 +eip: 0x10286e +eflags 0x46 +cs: 0x8 +ss: 0x10 +ds: 0x10 +es: 0x10 +fs: 0x10 +gs: 0x10 + 00210ea0 [00210ea0] 1023fe + 00210ea4 [00210ea4] 108aa4 + 00210ea8 [00210ea8] 10111e + 00210eac [00210eac] 210ebc + 00210eb0 [00210eb0] 10239e + 00210eb4 [00210eb4] 0001 + 00210eb8 [00210eb8] 10a0e0 + 00210ebc [00210ebc] 210edc + 00210ec0 [00210ec0] 1024ce + 00210ec4 [00210ec4] 1010101 + 00210ec8 [00210ec8] 1010101 + 00210ecc [00210ecc] 1010101 + 00210ed0 [00210ed0] 107740 + 00210ed4 [00210ed4] 0001 + 00210ed8 [00210ed8] 10cd74 + 00210edc [00210edc] 210f1c +</pre> +<li>2547: return 1! stack looks as follows: +<pre> +CPU 0: +eax: 0x1 1 +ecx: 0x108aa0 1084064 +edx: 0x108aa4 1084068 +ebx: 0x10074 65652 +esp: 0x108d40 1084736 +ebp: 0x108d5c 1084764 +esi: 0x10074 65652 +edi: 0xffde 65502 +eip: 0x102892 +eflags 0x6 +cs: 0x8 +ss: 0x10 +ds: 0x10 +es: 0x10 +fs: 0x10 +gs: 0x10 + 00108d40 [00108d40] 10231c + 00108d44 [00108d44] 10a144 + 00108d48 [00108d48] 0010 + 00108d4c [00108d4c] 0021 + 00108d50 [00108d50] 0000 + 00108d54 [00108d54] 0000 + 00108d58 [00108d58] 10a0e0 + 00108d5c [00108d5c] 0000 + 00108d60 [00108d60] 0001 + 00108d64 [00108d64] 0000 + 00108d68 [00108d68] 0000 + 00108d6c [00108d6c] 0000 + 00108d70 [00108d70] 0000 + 00108d74 [00108d74] 0000 + 00108d78 [00108d78] 0000 + 00108d7c [00108d7c] 0000 +</pre> +<li>2548: where will longjmp return? (answer: 10231c, in scheduler) +<li>2233:Scheduler on each processor selects in a round-robin fashion the + first runnable process. Which process will that be? (If we are + running with one processor.) (Ans: proc[0].) +<li>2229: what will be saved in cpu's jmpbuf? +<li>What is in proc[0]'s jmpbuf? +<li>2548: return 1. Stack looks as follows: +<pre> +CPU 0: +eax: 0x1 1 +ecx: 0x6c65746e 1818588270 +edx: 0x0 0 +ebx: 0x10a0e0 1089760 +esp: 0x210ea0 2166432 +ebp: 0x210ebc 2166460 +esi: 0x107f20 1081120 +edi: 0x107740 1079104 +eip: 0x102892 +eflags 0x2 +cs: 0x8 +ss: 0x10 +ds: 0x10 +es: 0x10 +fs: 0x10 +gs: 0x10 + 00210ea0 [00210ea0] 1023cf <--- return to sleep + 00210ea4 [00210ea4] 108aa4 + 00210ea8 [00210ea8] 10111e + 00210eac [00210eac] 210ebc + 00210eb0 [00210eb0] 10239e + 00210eb4 [00210eb4] 0001 + 00210eb8 [00210eb8] 10a0e0 + 00210ebc [00210ebc] 210edc + 00210ec0 [00210ec0] 1024ce + 00210ec4 [00210ec4] 1010101 + 00210ec8 [00210ec8] 1010101 + 00210ecc [00210ecc] 1010101 + 00210ed0 [00210ed0] 107740 + 00210ed4 [00210ed4] 0001 + 00210ed8 [00210ed8] 10cd74 + 00210edc [00210edc] 210f1c +</pre> +</ul> + +<p>Why switch from proc[0] to the processor stack, and then to + proc[0]'s stack? Why not instead run the scheduler on the kernel + stack of the last process that run on that cpu? + +<ul> + +<li>If the scheduler wanted to use the process stack, then it couldn't + have any stack variables live across process scheduling, since + they'd be different depending on which process just stopped running. + +<li>Suppose process p goes to sleep on CPU1, so CPU1 is idling in + scheduler() on p's stack. Someone wakes up p. CPU2 decides to run + p. Now p is running on its stack, and CPU1 is also running on the + same stack. They will likely scribble on each others' local + variables, return pointers, etc. + +<li>The same thing happens if CPU1 tries to reuse the process's page +tables to avoid a TLB flush. If the process gets killed and cleaned +up by the other CPU, now the page tables are wrong. I think some OSes +actually do this (with appropriate ref counting). + +</ul> + +<p>How is preemptive scheduling implemented in xv6? Answer see trap.c + line 2905 through 2917, and the implementation of yield() on sheet + 22. + +<p>How long is a timeslice for a user process? (possibly very short; + very important lock is held across context switch!) + +</body> + + + |