summaryrefslogtreecommitdiff
path: root/vm.c
diff options
context:
space:
mode:
Diffstat (limited to 'vm.c')
-rw-r--r--vm.c202
1 files changed, 121 insertions, 81 deletions
diff --git a/vm.c b/vm.c
index 231e133..98ac108 100644
--- a/vm.c
+++ b/vm.c
@@ -8,13 +8,20 @@
// The mappings from logical to linear are one to one (i.e.,
// segmentation doesn't do anything).
-// The mapping from linear to physical are one to one for the kernel.
-// The mappings for the kernel include all of physical memory (until
-// PHYSTOP), including the I/O hole, and the top of physical address
-// space, where additional devices are located.
-// The kernel itself is linked to be at 1MB, and its physical memory
-// is also at 1MB.
-// Physical memory for user programs is allocated from physical memory
+// There is one page table per process, plus one that's used
+// when a CPU is not running any process (kpgdir).
+// A user process uses the same page table as the kernel; the
+// page protection bits prevent it from using anything other
+// than its memory.
+//
+// setupkvm() and exec() set up every page table like this:
+// 0..640K : user memory (text, data, stack, heap)
+// 640K..1M : mapped direct (for IO space)
+// 1M..kernend : mapped direct (for the kernel's text and data)
+// kernend..PHYSTOP : mapped direct (kernel heap and user pages)
+// 0xfe000000..0 : mapped direct (devices such as ioapic)
+//
+// The kernel allocates memory for its heap and for user memory
// between kernend and the end of physical memory (PHYSTOP).
// The virtual address space of each user program includes the kernel
// (which is inaccessible in user mode). The user program addresses
@@ -22,7 +29,7 @@
// (both in physical memory and in the kernel's virtual address
// space).
-#define PHYSTOP 0x300000
+#define PHYSTOP 0x1000000
#define USERTOP 0xA0000
static uint kerntext; // Linker starts kernel at 1MB
@@ -31,29 +38,11 @@ static uint kerndata;
static uint kerndsz;
static uint kernend;
static uint freesz;
-pde_t *kpgdir; // One kernel page table for scheduler procs
-
-void
-printpgdir(pde_t *pgdir)
-{
- uint i;
- uint j;
-
- cprintf("printpgdir 0x%x\n", pgdir);
- for (i = 0; i < NPDENTRIES; i++) {
- if (pgdir[i] != 0 && i < 100) {
- cprintf("pgdir %d, v=0x%x\n", i, pgdir[i]);
- pte_t *pgtab = (pte_t*) PTE_ADDR(pgdir[i]);
- for (j = 0; j < NPTENTRIES; j++) {
- if (pgtab[j] != 0)
- cprintf("pgtab %d, v=0x%x, addr=0x%x\n", j, PGADDR(i, j, 0),
- PTE_ADDR(pgtab[j]));
- }
- }
- }
- cprintf("printpgdir done\n", pgdir);
-}
+static pde_t *kpgdir; // for use in scheduler()
+// return the address of the PTE in page table pgdir
+// that corresponds to linear address va. if create!=0,
+// create any required page table pages.
static pte_t *
walkpgdir(pde_t *pgdir, const void *va, int create)
{
@@ -80,16 +69,26 @@ walkpgdir(pde_t *pgdir, const void *va, int create)
return &pgtab[PTX(va)];
}
+// create PTEs for linear addresses starting at la that refer to
+// physical addresses starting at pa. la and size might not
+// be page-aligned.
static int
mappages(pde_t *pgdir, void *la, uint size, uint pa, int perm)
{
- uint i;
- pte_t *pte;
-
- for (i = 0; i < size; i += PGSIZE) {
- if (!(pte = walkpgdir(pgdir, (void*)(la + i), 1)))
+ char *first = PGROUNDDOWN(la);
+ char *last = PGROUNDDOWN(la + size - 1);
+ char *a = first;
+ while(1){
+ pte_t *pte = walkpgdir(pgdir, a, 1);
+ if(pte == 0)
return 0;
- *pte = (pa + i) | perm | PTE_P;
+ if(*pte & PTE_P)
+ panic("remap");
+ *pte = pa | perm | PTE_P;
+ if(a == last)
+ break;
+ a += PGSIZE;
+ pa += PGSIZE;
}
return 1;
}
@@ -101,12 +100,15 @@ ksegment(void)
{
struct cpu *c;
- // Map once virtual addresses to linear addresses using identity map
+ // Map virtual addresses to linear addresses using identity map.
+ // Cannot share a CODE descriptor for both kernel and user
+ // because it would have to have DPL_USR, but the CPU forbids
+ // an interrupt from CPL=0 to DPL=3.
c = &cpus[cpunum()];
c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
- c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0x0, 0xffffffff, DPL_USER);
- c->gdt[SEG_UDATA] = SEG(STA_W, 0x0, 0xffffffff, DPL_USER);
+ c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
+ c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
// map cpu, and curproc
c->gdt[SEG_KCPU] = SEG(STA_W, &c->cpu, 8, 0);
@@ -119,9 +121,9 @@ ksegment(void)
proc = 0;
}
-// Setup address space and current process task state.
+// Switch h/w page table and TSS registers to point to process p.
void
-loadvm(struct proc *p)
+switchuvm(struct proc *p)
{
pushcli();
@@ -133,14 +135,21 @@ loadvm(struct proc *p)
ltr(SEG_TSS << 3);
if (p->pgdir == 0)
- panic("loadvm: no pgdir\n");
+ panic("switchuvm: no pgdir\n");
lcr3(PADDR(p->pgdir)); // switch to new address space
popcli();
}
-// Setup kernel part of a page table. Linear adresses map one-to-one
-// on physical addresses.
+// Switch h/w page table register to the kernel-only page table, for when
+// no process is running.
+void
+switchkvm()
+{
+ lcr3(PADDR(kpgdir)); // Switch to the kernel page table
+}
+
+// Set up kernel part of a page table.
pde_t*
setupkvm(void)
{
@@ -153,10 +162,10 @@ setupkvm(void)
// Map IO space from 640K to 1Mbyte
if (!mappages(pgdir, (void *)USERTOP, 0x60000, USERTOP, PTE_W))
return 0;
- // Map kernel text from kern text addr read-only
+ // Map kernel text read-only
if (!mappages(pgdir, (void *) kerntext, kerntsz, kerntext, 0))
return 0;
- // Map kernel data form kern data addr R/W
+ // Map kernel data read/write
if (!mappages(pgdir, (void *) kerndata, kerndsz, kerndata, PTE_W))
return 0;
// Map dynamically-allocated memory read/write (kernel stacks, user mem)
@@ -168,6 +177,10 @@ setupkvm(void)
return pgdir;
}
+// return the physical address that a given user address
+// maps to. the result is also a kernel logical address,
+// since the kernel maps the physical memory allocated to user
+// processes directly.
char*
uva2ka(pde_t *pgdir, char *uva)
{
@@ -177,25 +190,60 @@ uva2ka(pde_t *pgdir, char *uva)
return (char *)pa;
}
+// allocate sz bytes more memory for a process starting at the
+// given user address; allocates physical memory and page
+// table entries. addr and sz need not be page-aligned.
+// it is a no-op for any parts of the requested memory
+// that are already allocated.
int
allocuvm(pde_t *pgdir, char *addr, uint sz)
{
- uint i, n;
- char *mem;
+ if (addr + sz > (char*)USERTOP)
+ return 0;
+ char *first = PGROUNDDOWN(addr);
+ char *last = PGROUNDDOWN(addr + sz - 1);
+ char *a;
+ for(a = first; a <= last; a += PGSIZE){
+ pte_t *pte = walkpgdir(pgdir, a, 0);
+ if(pte == 0 || (*pte & PTE_P) == 0){
+ char *mem = kalloc(PGSIZE);
+ if(mem == 0){
+ // XXX clean up?
+ return 0;
+ }
+ memset(mem, 0, PGSIZE);
+ mappages(pgdir, a, PGSIZE, PADDR(mem), PTE_W|PTE_U);
+ }
+ }
+ return 1;
+}
- n = PGROUNDUP(sz);
- if (addr + n >= USERTOP)
+// deallocate some of the user pages, in response to sbrk()
+// with a negative argument. if addr is not page-aligned,
+// then only deallocates starting at the next page boundary.
+int
+deallocuvm(pde_t *pgdir, char *addr, uint sz)
+{
+ if (addr + sz > (char*)USERTOP)
return 0;
- for (i = 0; i < n; i += PGSIZE) {
- if (!(mem = kalloc(PGSIZE))) { // XXX cleanup what we did?
- return 0;
+ char *first = (char*) PGROUNDUP((uint)addr);
+ char *last = PGROUNDDOWN(addr + sz - 1);
+ char *a;
+ for(a = first; a <= last; a += PGSIZE){
+ pte_t *pte = walkpgdir(pgdir, a, 0);
+ if(pte && (*pte & PTE_P) != 0){
+ uint pa = PTE_ADDR(*pte);
+ if(pa == 0)
+ panic("deallocuvm");
+ kfree((void *) pa, PGSIZE);
+ *pte = 0;
}
- memset(mem, 0, PGSIZE);
- mappages(pgdir, addr + i, PGSIZE, PADDR(mem), PTE_W|PTE_U);
}
return 1;
}
+// free a page table and all the physical memory pages
+// in the user part.
void
freevm(pde_t *pgdir)
{
@@ -211,9 +259,8 @@ freevm(pde_t *pgdir)
if (pgtab[j] != 0) {
uint pa = PTE_ADDR(pgtab[j]);
uint va = PGADDR(i, j, 0);
- if (va >= USERTOP) // done with user part?
- break;
- kfree((void *) pa, PGSIZE);
+ if (va < USERTOP) // user memory
+ kfree((void *) pa, PGSIZE);
pgtab[j] = 0;
}
}
@@ -261,6 +308,8 @@ inituvm(pde_t *pgdir, char *addr, char *init, uint sz)
}
}
+// given a parent process's page table, create a copy
+// of it for a child.
pde_t*
copyuvm(pde_t *pgdir, uint sz)
{
@@ -273,17 +322,22 @@ copyuvm(pde_t *pgdir, uint sz)
for (i = 0; i < sz; i += PGSIZE) {
if (!(pte = walkpgdir(pgdir, (void *)i, 0)))
panic("copyuvm: pte should exist\n");
- pa = PTE_ADDR(*pte);
- if (!(mem = kalloc(PGSIZE)))
- return 0;
- memmove(mem, (char *)pa, PGSIZE);
- if (!mappages(d, (void *)i, PGSIZE, PADDR(mem), PTE_W|PTE_U))
- return 0;
+ if(*pte & PTE_P){
+ pa = PTE_ADDR(*pte);
+ if (!(mem = kalloc(PGSIZE)))
+ return 0;
+ memmove(mem, (char *)pa, PGSIZE);
+ if (!mappages(d, (void *)i, PGSIZE, PADDR(mem), PTE_W|PTE_U))
+ return 0;
+ }
}
return d;
}
-// Gather about physical memory layout. Called once during boot.
+// Gather information about physical memory layout.
+// Called once during boot.
+// Really should find out how much physical memory
+// there is rather than assuming PHYSTOP.
void
pminit(void)
{
@@ -298,27 +352,13 @@ pminit(void)
kernend = ((uint)end + PGSIZE) & ~(PGSIZE-1);
kerntext = ph[0].va;
kerndata = ph[1].va;
- kerntsz = kerndata - kerntext;
- kerndsz = kernend - kerndata;
+ kerntsz = ph[0].memsz;
+ kerndsz = ph[1].memsz;
freesz = PHYSTOP - kernend;
- cprintf("kerntext@0x%x(sz=0x%x), kerndata@0x%x(sz=0x%x), kernend 0x%x freesz = 0x%x\n",
- kerntext, kerntsz, kerndata, kerndsz, kernend, freesz);
-
kinit((char *)kernend, freesz);
}
-// Jump to mainc on a properly-allocated kernel stack
-void
-jkstack(void)
-{
- char *kstack = kalloc(PGSIZE);
- if (!kstack)
- panic("jkstack\n");
- char *top = kstack + PGSIZE;
- jstack((uint) top);
-}
-
// Allocate one page table for the machine for the kernel address
// space for scheduler processes.
void