summaryrefslogtreecommitdiff
path: root/vm.c
diff options
context:
space:
mode:
Diffstat (limited to 'vm.c')
-rw-r--r--vm.c381
1 files changed, 381 insertions, 0 deletions
diff --git a/vm.c b/vm.c
new file mode 100644
index 0000000..262f079
--- /dev/null
+++ b/vm.c
@@ -0,0 +1,381 @@
+#include "param.h"
+#include "types.h"
+#include "defs.h"
+#include "x86.h"
+#include "mmu.h"
+#include "proc.h"
+#include "elf.h"
+
+// The mappings from logical to linear are one to one (i.e.,
+// segmentation doesn't do anything).
+// There is one page table per process, plus one that's used
+// when a CPU is not running any process (kpgdir).
+// A user process uses the same page table as the kernel; the
+// page protection bits prevent it from using anything other
+// than its memory.
+//
+// setupkvm() and exec() set up every page table like this:
+// 0..640K : user memory (text, data, stack, heap)
+// 640K..1M : mapped direct (for IO space)
+// 1M..kernend : mapped direct (for the kernel's text and data)
+// kernend..PHYSTOP : mapped direct (kernel heap and user pages)
+// 0xfe000000..0 : mapped direct (devices such as ioapic)
+//
+// The kernel allocates memory for its heap and for user memory
+// between kernend and the end of physical memory (PHYSTOP).
+// The virtual address space of each user program includes the kernel
+// (which is inaccessible in user mode). The user program addresses
+// range from 0 till 640KB (USERTOP), which where the I/O hole starts
+// (both in physical memory and in the kernel's virtual address
+// space).
+
+#define PHYSTOP 0x1000000
+#define USERTOP 0xA0000
+
+static uint kerntext; // Linker starts kernel at 1MB
+static uint kerntsz;
+static uint kerndata;
+static uint kerndsz;
+static uint kernend;
+static uint freesz;
+static pde_t *kpgdir; // for use in scheduler()
+
+// return the address of the PTE in page table pgdir
+// that corresponds to linear address va. if create!=0,
+// create any required page table pages.
+static pte_t *
+walkpgdir(pde_t *pgdir, const void *va, int create)
+{
+ uint r;
+ pde_t *pde;
+ pte_t *pgtab;
+
+ pde = &pgdir[PDX(va)];
+ if (*pde & PTE_P) {
+ pgtab = (pte_t*) PTE_ADDR(*pde);
+ } else if (!create || !(r = (uint) kalloc(PGSIZE)))
+ return 0;
+ else {
+ pgtab = (pte_t*) r;
+
+ // Make sure all those PTE_P bits are zero.
+ memset(pgtab, 0, PGSIZE);
+
+ // The permissions here are overly generous, but they can
+ // be further restricted by the permissions in the page table
+ // entries, if necessary.
+ *pde = PADDR(r) | PTE_P | PTE_W | PTE_U;
+ }
+ return &pgtab[PTX(va)];
+}
+
+// create PTEs for linear addresses starting at la that refer to
+// physical addresses starting at pa. la and size might not
+// be page-aligned.
+static int
+mappages(pde_t *pgdir, void *la, uint size, uint pa, int perm)
+{
+ char *first = PGROUNDDOWN(la);
+ char *last = PGROUNDDOWN(la + size - 1);
+ char *a = first;
+ while(1){
+ pte_t *pte = walkpgdir(pgdir, a, 1);
+ if(pte == 0)
+ return 0;
+ if(*pte & PTE_P)
+ panic("remap");
+ *pte = pa | perm | PTE_P;
+ if(a == last)
+ break;
+ a += PGSIZE;
+ pa += PGSIZE;
+ }
+ return 1;
+}
+
+// Set up CPU's kernel segment descriptors.
+// Run once at boot time on each CPU.
+void
+ksegment(void)
+{
+ struct cpu *c;
+
+ // Map virtual addresses to linear addresses using identity map.
+ // Cannot share a CODE descriptor for both kernel and user
+ // because it would have to have DPL_USR, but the CPU forbids
+ // an interrupt from CPL=0 to DPL=3.
+ c = &cpus[cpunum()];
+ c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
+ c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
+ c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
+ c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
+
+ // map cpu, and curproc
+ c->gdt[SEG_KCPU] = SEG(STA_W, &c->cpu, 8, 0);
+
+ lgdt(c->gdt, sizeof(c->gdt));
+ loadgs(SEG_KCPU << 3);
+
+ // Initialize cpu-local storage.
+ cpu = c;
+ proc = 0;
+}
+
+// Switch h/w page table and TSS registers to point to process p.
+void
+switchuvm(struct proc *p)
+{
+ pushcli();
+
+ // Setup TSS
+ cpu->gdt[SEG_TSS] = SEG16(STS_T32A, &cpu->ts, sizeof(cpu->ts)-1, 0);
+ cpu->gdt[SEG_TSS].s = 0;
+ cpu->ts.ss0 = SEG_KDATA << 3;
+ cpu->ts.esp0 = (uint)proc->kstack + KSTACKSIZE;
+ ltr(SEG_TSS << 3);
+
+ if (p->pgdir == 0)
+ panic("switchuvm: no pgdir\n");
+
+ lcr3(PADDR(p->pgdir)); // switch to new address space
+ popcli();
+}
+
+// Switch h/w page table register to the kernel-only page table, for when
+// no process is running.
+void
+switchkvm()
+{
+ lcr3(PADDR(kpgdir)); // Switch to the kernel page table
+}
+
+// Set up kernel part of a page table.
+pde_t*
+setupkvm(void)
+{
+ pde_t *pgdir;
+
+ // Allocate page directory
+ if (!(pgdir = (pde_t *) kalloc(PGSIZE)))
+ return 0;
+ memset(pgdir, 0, PGSIZE);
+ // Map IO space from 640K to 1Mbyte
+ if (!mappages(pgdir, (void *)USERTOP, 0x60000, USERTOP, PTE_W))
+ return 0;
+ // Map kernel text read-only
+ if (!mappages(pgdir, (void *) kerntext, kerntsz, kerntext, 0))
+ return 0;
+ // Map kernel data read/write
+ if (!mappages(pgdir, (void *) kerndata, kerndsz, kerndata, PTE_W))
+ return 0;
+ // Map dynamically-allocated memory read/write (kernel stacks, user mem)
+ if (!mappages(pgdir, (void *) kernend, freesz, PADDR(kernend), PTE_W))
+ return 0;
+ // Map devices such as ioapic, lapic, ...
+ if (!mappages(pgdir, (void *)0xFE000000, 0x2000000, 0xFE000000, PTE_W))
+ return 0;
+ return pgdir;
+}
+
+// return the physical address that a given user address
+// maps to. the result is also a kernel logical address,
+// since the kernel maps the physical memory allocated to user
+// processes directly.
+char*
+uva2ka(pde_t *pgdir, char *uva)
+{
+ pte_t *pte = walkpgdir(pgdir, uva, 0);
+ if (pte == 0) return 0;
+ uint pa = PTE_ADDR(*pte);
+ return (char *)pa;
+}
+
+// allocate sz bytes more memory for a process starting at the
+// given user address; allocates physical memory and page
+// table entries. addr and sz need not be page-aligned.
+// it is a no-op for any parts of the requested memory
+// that are already allocated.
+int
+allocuvm(pde_t *pgdir, char *addr, uint sz)
+{
+ if (addr + sz > (char*)USERTOP)
+ return 0;
+ char *first = PGROUNDDOWN(addr);
+ char *last = PGROUNDDOWN(addr + sz - 1);
+ char *a;
+ for(a = first; a <= last; a += PGSIZE){
+ pte_t *pte = walkpgdir(pgdir, a, 0);
+ if(pte == 0 || (*pte & PTE_P) == 0){
+ char *mem = kalloc(PGSIZE);
+ if(mem == 0){
+ // XXX clean up?
+ return 0;
+ }
+ memset(mem, 0, PGSIZE);
+ mappages(pgdir, a, PGSIZE, PADDR(mem), PTE_W|PTE_U);
+ }
+ }
+ return 1;
+}
+
+// deallocate some of the user pages, in response to sbrk()
+// with a negative argument. if addr is not page-aligned,
+// then only deallocates starting at the next page boundary.
+int
+deallocuvm(pde_t *pgdir, char *addr, uint sz)
+{
+ if (addr + sz > (char*)USERTOP)
+ return 0;
+ char *first = (char*) PGROUNDUP((uint)addr);
+ char *last = PGROUNDDOWN(addr + sz - 1);
+ char *a;
+ for(a = first; a <= last; a += PGSIZE){
+ pte_t *pte = walkpgdir(pgdir, a, 0);
+ if(pte && (*pte & PTE_P) != 0){
+ uint pa = PTE_ADDR(*pte);
+ if(pa == 0)
+ panic("deallocuvm");
+ kfree((void *) pa, PGSIZE);
+ *pte = 0;
+ }
+ }
+ return 1;
+}
+
+// free a page table and all the physical memory pages
+// in the user part.
+void
+freevm(pde_t *pgdir)
+{
+ uint i, j, da;
+
+ if (!pgdir)
+ panic("freevm: no pgdir\n");
+ for (i = 0; i < NPDENTRIES; i++) {
+ da = PTE_ADDR(pgdir[i]);
+ if (da != 0) {
+ pte_t *pgtab = (pte_t*) da;
+ for (j = 0; j < NPTENTRIES; j++) {
+ if (pgtab[j] != 0) {
+ uint pa = PTE_ADDR(pgtab[j]);
+ uint va = PGADDR(i, j, 0);
+ if (va < USERTOP) // user memory
+ kfree((void *) pa, PGSIZE);
+ pgtab[j] = 0;
+ }
+ }
+ kfree((void *) da, PGSIZE);
+ pgdir[i] = 0;
+ }
+ }
+ kfree((void *) pgdir, PGSIZE);
+}
+
+int
+loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
+{
+ uint i, pa, n;
+ pte_t *pte;
+
+ if ((uint)addr % PGSIZE != 0)
+ panic("loaduvm: addr must be page aligned\n");
+ for (i = 0; i < sz; i += PGSIZE) {
+ if (!(pte = walkpgdir(pgdir, addr+i, 0)))
+ panic("loaduvm: address should exist\n");
+ pa = PTE_ADDR(*pte);
+ if (sz - i < PGSIZE) n = sz - i;
+ else n = PGSIZE;
+ if(readi(ip, (char *)pa, offset+i, n) != n)
+ return 0;
+ }
+ return 1;
+}
+
+void
+inituvm(pde_t *pgdir, char *addr, char *init, uint sz)
+{
+ uint i, pa, n, off;
+ pte_t *pte;
+
+ for (i = 0; i < sz; i += PGSIZE) {
+ if (!(pte = walkpgdir(pgdir, (void *)(i+addr), 0)))
+ panic("inituvm: pte should exist\n");
+ off = (i+(uint)addr) % PGSIZE;
+ pa = PTE_ADDR(*pte);
+ if (sz - i < PGSIZE) n = sz - i;
+ else n = PGSIZE;
+ memmove((char *)pa+off, init+i, n);
+ }
+}
+
+// given a parent process's page table, create a copy
+// of it for a child.
+pde_t*
+copyuvm(pde_t *pgdir, uint sz)
+{
+ pde_t *d = setupkvm();
+ pte_t *pte;
+ uint pa, i;
+ char *mem;
+
+ if (!d) return 0;
+ for (i = 0; i < sz; i += PGSIZE) {
+ if (!(pte = walkpgdir(pgdir, (void *)i, 0)))
+ panic("copyuvm: pte should exist\n");
+ if(*pte & PTE_P){
+ pa = PTE_ADDR(*pte);
+ if (!(mem = kalloc(PGSIZE)))
+ return 0;
+ memmove(mem, (char *)pa, PGSIZE);
+ if (!mappages(d, (void *)i, PGSIZE, PADDR(mem), PTE_W|PTE_U))
+ return 0;
+ }
+ }
+ return d;
+}
+
+// Gather information about physical memory layout.
+// Called once during boot.
+// Really should find out how much physical memory
+// there is rather than assuming PHYSTOP.
+void
+pminit(void)
+{
+ extern char end[];
+ struct proghdr *ph;
+ struct elfhdr *elf = (struct elfhdr*)0x10000; // scratch space
+
+ if (elf->magic != ELF_MAGIC || elf->phnum != 2)
+ panic("pminit: need a text and data segment\n");
+
+ ph = (struct proghdr*)((uchar*)elf + elf->phoff);
+ kernend = ((uint)end + PGSIZE) & ~(PGSIZE-1);
+ kerntext = ph[0].va;
+ kerndata = ph[1].va;
+ kerntsz = ph[0].memsz;
+ kerndsz = ph[1].memsz;
+ freesz = PHYSTOP - kernend;
+
+ kinit((char *)kernend, freesz);
+}
+
+// Allocate one page table for the machine for the kernel address
+// space for scheduler processes.
+void
+kvmalloc(void)
+{
+ kpgdir = setupkvm();
+}
+
+// Turn on paging.
+void
+vmenable(void)
+{
+ uint cr0;
+
+ switchkvm(); // load kpgdir into cr3
+ cr0 = rcr0();
+ cr0 |= CR0_PG;
+ lcr0(cr0);
+}
+