diff options
Diffstat (limited to 'vm.c')
-rw-r--r-- | vm.c | 381 |
1 files changed, 381 insertions, 0 deletions
@@ -0,0 +1,381 @@ +#include "param.h" +#include "types.h" +#include "defs.h" +#include "x86.h" +#include "mmu.h" +#include "proc.h" +#include "elf.h" + +// The mappings from logical to linear are one to one (i.e., +// segmentation doesn't do anything). +// There is one page table per process, plus one that's used +// when a CPU is not running any process (kpgdir). +// A user process uses the same page table as the kernel; the +// page protection bits prevent it from using anything other +// than its memory. +// +// setupkvm() and exec() set up every page table like this: +// 0..640K : user memory (text, data, stack, heap) +// 640K..1M : mapped direct (for IO space) +// 1M..kernend : mapped direct (for the kernel's text and data) +// kernend..PHYSTOP : mapped direct (kernel heap and user pages) +// 0xfe000000..0 : mapped direct (devices such as ioapic) +// +// The kernel allocates memory for its heap and for user memory +// between kernend and the end of physical memory (PHYSTOP). +// The virtual address space of each user program includes the kernel +// (which is inaccessible in user mode). The user program addresses +// range from 0 till 640KB (USERTOP), which where the I/O hole starts +// (both in physical memory and in the kernel's virtual address +// space). + +#define PHYSTOP 0x1000000 +#define USERTOP 0xA0000 + +static uint kerntext; // Linker starts kernel at 1MB +static uint kerntsz; +static uint kerndata; +static uint kerndsz; +static uint kernend; +static uint freesz; +static pde_t *kpgdir; // for use in scheduler() + +// return the address of the PTE in page table pgdir +// that corresponds to linear address va. if create!=0, +// create any required page table pages. +static pte_t * +walkpgdir(pde_t *pgdir, const void *va, int create) +{ + uint r; + pde_t *pde; + pte_t *pgtab; + + pde = &pgdir[PDX(va)]; + if (*pde & PTE_P) { + pgtab = (pte_t*) PTE_ADDR(*pde); + } else if (!create || !(r = (uint) kalloc(PGSIZE))) + return 0; + else { + pgtab = (pte_t*) r; + + // Make sure all those PTE_P bits are zero. + memset(pgtab, 0, PGSIZE); + + // The permissions here are overly generous, but they can + // be further restricted by the permissions in the page table + // entries, if necessary. + *pde = PADDR(r) | PTE_P | PTE_W | PTE_U; + } + return &pgtab[PTX(va)]; +} + +// create PTEs for linear addresses starting at la that refer to +// physical addresses starting at pa. la and size might not +// be page-aligned. +static int +mappages(pde_t *pgdir, void *la, uint size, uint pa, int perm) +{ + char *first = PGROUNDDOWN(la); + char *last = PGROUNDDOWN(la + size - 1); + char *a = first; + while(1){ + pte_t *pte = walkpgdir(pgdir, a, 1); + if(pte == 0) + return 0; + if(*pte & PTE_P) + panic("remap"); + *pte = pa | perm | PTE_P; + if(a == last) + break; + a += PGSIZE; + pa += PGSIZE; + } + return 1; +} + +// Set up CPU's kernel segment descriptors. +// Run once at boot time on each CPU. +void +ksegment(void) +{ + struct cpu *c; + + // Map virtual addresses to linear addresses using identity map. + // Cannot share a CODE descriptor for both kernel and user + // because it would have to have DPL_USR, but the CPU forbids + // an interrupt from CPL=0 to DPL=3. + c = &cpus[cpunum()]; + c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0); + c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0); + c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER); + c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER); + + // map cpu, and curproc + c->gdt[SEG_KCPU] = SEG(STA_W, &c->cpu, 8, 0); + + lgdt(c->gdt, sizeof(c->gdt)); + loadgs(SEG_KCPU << 3); + + // Initialize cpu-local storage. + cpu = c; + proc = 0; +} + +// Switch h/w page table and TSS registers to point to process p. +void +switchuvm(struct proc *p) +{ + pushcli(); + + // Setup TSS + cpu->gdt[SEG_TSS] = SEG16(STS_T32A, &cpu->ts, sizeof(cpu->ts)-1, 0); + cpu->gdt[SEG_TSS].s = 0; + cpu->ts.ss0 = SEG_KDATA << 3; + cpu->ts.esp0 = (uint)proc->kstack + KSTACKSIZE; + ltr(SEG_TSS << 3); + + if (p->pgdir == 0) + panic("switchuvm: no pgdir\n"); + + lcr3(PADDR(p->pgdir)); // switch to new address space + popcli(); +} + +// Switch h/w page table register to the kernel-only page table, for when +// no process is running. +void +switchkvm() +{ + lcr3(PADDR(kpgdir)); // Switch to the kernel page table +} + +// Set up kernel part of a page table. +pde_t* +setupkvm(void) +{ + pde_t *pgdir; + + // Allocate page directory + if (!(pgdir = (pde_t *) kalloc(PGSIZE))) + return 0; + memset(pgdir, 0, PGSIZE); + // Map IO space from 640K to 1Mbyte + if (!mappages(pgdir, (void *)USERTOP, 0x60000, USERTOP, PTE_W)) + return 0; + // Map kernel text read-only + if (!mappages(pgdir, (void *) kerntext, kerntsz, kerntext, 0)) + return 0; + // Map kernel data read/write + if (!mappages(pgdir, (void *) kerndata, kerndsz, kerndata, PTE_W)) + return 0; + // Map dynamically-allocated memory read/write (kernel stacks, user mem) + if (!mappages(pgdir, (void *) kernend, freesz, PADDR(kernend), PTE_W)) + return 0; + // Map devices such as ioapic, lapic, ... + if (!mappages(pgdir, (void *)0xFE000000, 0x2000000, 0xFE000000, PTE_W)) + return 0; + return pgdir; +} + +// return the physical address that a given user address +// maps to. the result is also a kernel logical address, +// since the kernel maps the physical memory allocated to user +// processes directly. +char* +uva2ka(pde_t *pgdir, char *uva) +{ + pte_t *pte = walkpgdir(pgdir, uva, 0); + if (pte == 0) return 0; + uint pa = PTE_ADDR(*pte); + return (char *)pa; +} + +// allocate sz bytes more memory for a process starting at the +// given user address; allocates physical memory and page +// table entries. addr and sz need not be page-aligned. +// it is a no-op for any parts of the requested memory +// that are already allocated. +int +allocuvm(pde_t *pgdir, char *addr, uint sz) +{ + if (addr + sz > (char*)USERTOP) + return 0; + char *first = PGROUNDDOWN(addr); + char *last = PGROUNDDOWN(addr + sz - 1); + char *a; + for(a = first; a <= last; a += PGSIZE){ + pte_t *pte = walkpgdir(pgdir, a, 0); + if(pte == 0 || (*pte & PTE_P) == 0){ + char *mem = kalloc(PGSIZE); + if(mem == 0){ + // XXX clean up? + return 0; + } + memset(mem, 0, PGSIZE); + mappages(pgdir, a, PGSIZE, PADDR(mem), PTE_W|PTE_U); + } + } + return 1; +} + +// deallocate some of the user pages, in response to sbrk() +// with a negative argument. if addr is not page-aligned, +// then only deallocates starting at the next page boundary. +int +deallocuvm(pde_t *pgdir, char *addr, uint sz) +{ + if (addr + sz > (char*)USERTOP) + return 0; + char *first = (char*) PGROUNDUP((uint)addr); + char *last = PGROUNDDOWN(addr + sz - 1); + char *a; + for(a = first; a <= last; a += PGSIZE){ + pte_t *pte = walkpgdir(pgdir, a, 0); + if(pte && (*pte & PTE_P) != 0){ + uint pa = PTE_ADDR(*pte); + if(pa == 0) + panic("deallocuvm"); + kfree((void *) pa, PGSIZE); + *pte = 0; + } + } + return 1; +} + +// free a page table and all the physical memory pages +// in the user part. +void +freevm(pde_t *pgdir) +{ + uint i, j, da; + + if (!pgdir) + panic("freevm: no pgdir\n"); + for (i = 0; i < NPDENTRIES; i++) { + da = PTE_ADDR(pgdir[i]); + if (da != 0) { + pte_t *pgtab = (pte_t*) da; + for (j = 0; j < NPTENTRIES; j++) { + if (pgtab[j] != 0) { + uint pa = PTE_ADDR(pgtab[j]); + uint va = PGADDR(i, j, 0); + if (va < USERTOP) // user memory + kfree((void *) pa, PGSIZE); + pgtab[j] = 0; + } + } + kfree((void *) da, PGSIZE); + pgdir[i] = 0; + } + } + kfree((void *) pgdir, PGSIZE); +} + +int +loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz) +{ + uint i, pa, n; + pte_t *pte; + + if ((uint)addr % PGSIZE != 0) + panic("loaduvm: addr must be page aligned\n"); + for (i = 0; i < sz; i += PGSIZE) { + if (!(pte = walkpgdir(pgdir, addr+i, 0))) + panic("loaduvm: address should exist\n"); + pa = PTE_ADDR(*pte); + if (sz - i < PGSIZE) n = sz - i; + else n = PGSIZE; + if(readi(ip, (char *)pa, offset+i, n) != n) + return 0; + } + return 1; +} + +void +inituvm(pde_t *pgdir, char *addr, char *init, uint sz) +{ + uint i, pa, n, off; + pte_t *pte; + + for (i = 0; i < sz; i += PGSIZE) { + if (!(pte = walkpgdir(pgdir, (void *)(i+addr), 0))) + panic("inituvm: pte should exist\n"); + off = (i+(uint)addr) % PGSIZE; + pa = PTE_ADDR(*pte); + if (sz - i < PGSIZE) n = sz - i; + else n = PGSIZE; + memmove((char *)pa+off, init+i, n); + } +} + +// given a parent process's page table, create a copy +// of it for a child. +pde_t* +copyuvm(pde_t *pgdir, uint sz) +{ + pde_t *d = setupkvm(); + pte_t *pte; + uint pa, i; + char *mem; + + if (!d) return 0; + for (i = 0; i < sz; i += PGSIZE) { + if (!(pte = walkpgdir(pgdir, (void *)i, 0))) + panic("copyuvm: pte should exist\n"); + if(*pte & PTE_P){ + pa = PTE_ADDR(*pte); + if (!(mem = kalloc(PGSIZE))) + return 0; + memmove(mem, (char *)pa, PGSIZE); + if (!mappages(d, (void *)i, PGSIZE, PADDR(mem), PTE_W|PTE_U)) + return 0; + } + } + return d; +} + +// Gather information about physical memory layout. +// Called once during boot. +// Really should find out how much physical memory +// there is rather than assuming PHYSTOP. +void +pminit(void) +{ + extern char end[]; + struct proghdr *ph; + struct elfhdr *elf = (struct elfhdr*)0x10000; // scratch space + + if (elf->magic != ELF_MAGIC || elf->phnum != 2) + panic("pminit: need a text and data segment\n"); + + ph = (struct proghdr*)((uchar*)elf + elf->phoff); + kernend = ((uint)end + PGSIZE) & ~(PGSIZE-1); + kerntext = ph[0].va; + kerndata = ph[1].va; + kerntsz = ph[0].memsz; + kerndsz = ph[1].memsz; + freesz = PHYSTOP - kernend; + + kinit((char *)kernend, freesz); +} + +// Allocate one page table for the machine for the kernel address +// space for scheduler processes. +void +kvmalloc(void) +{ + kpgdir = setupkvm(); +} + +// Turn on paging. +void +vmenable(void) +{ + uint cr0; + + switchkvm(); // load kpgdir into cr3 + cr0 = rcr0(); + cr0 |= CR0_PG; + lcr0(cr0); +} + |