diff options
Diffstat (limited to 'web/l-threads.html')
| -rw-r--r-- | web/l-threads.html | 316 | 
1 files changed, 316 insertions, 0 deletions
| diff --git a/web/l-threads.html b/web/l-threads.html new file mode 100644 index 0000000..8587abb --- /dev/null +++ b/web/l-threads.html @@ -0,0 +1,316 @@ +<title>L8</title> +<html> +<head> +</head> +<body> + +<h1>Threads, processes, and context switching</h1> + +<p>Required reading: proc.c (focus on scheduler() and sched()), +setjmp.S, and sys_fork (in sysproc.c) + +<h2>Overview</h2> + + +<p>Big picture: more programs than processors.  How to share the +limited number of processors among the programs? + +<p>Observation: most programs don't need the processor continuously, +because they frequently have to wait for input (from user, disk, +network, etc.) + +<p>Idea: when one program must wait, it releases the processor, and +gives it to another program. + +<p>Mechanism: thread of computation, an active active computation.  A +thread is an abstraction that contains the minimal state that is +necessary to stop an active and an resume it at some point later. +What that state is depends on the processor.  On x86, it is the +processor registers (see setjmp.S). + +<p>Address spaces and threads: address spaces and threads are in +principle independent concepts.  One can switch from one thread to +another thread in the same address space, or one can switch from one +thread to another thread in another address space.  Example: in xv6, +one switches address spaces by switching segmentation registers (see +setupsegs).  Does xv6 ever switch from one thread to another in the +same address space? (Answer: yes, v6 switches, for example, from the +scheduler, proc[0], to the kernel part of init, proc[1].)  In the JOS +kernel we switch from the kernel thread to a user thread, but we don't +switch kernel space necessarily. + +<p>Process: one address space plus one or more threads of computation. +In xv6 all <i>user</i> programs contain one thread of computation and +one address space, and the concepts of address space and threads of +computation are not separated but bundled together in the concept of a +process.  When switching from the kernel program (which has multiple +threads) to a user program, xv6 switches threads (switching from a +kernel stack to a user stack) and address spaces (the hardware uses +the kernel segment registers and the user segment registers). + +<p>xv6 supports the following operations on processes: +<ul> +<li>fork; create a new process, which is a copy of the parent. +<li>exec; execute a program +<li>exit: terminte process +<li>wait: wait for a process to terminate +<li>kill: kill process +<li>sbrk: grow the address space of a process. +</ul> +This interfaces doesn't separate threads and address spaces. For +example, with this interface one cannot create additional threads in +the same threads.  Modern Unixes provides additional primitives +(called pthreads, POSIX threads) to create additional threads in a +process and coordinate their activities. + +<p>Scheduling.  The thread manager needs a method for deciding which +thread to run if multiple threads are runnable.  The xv6 policy is to +run the processes round robin. Why round robin?  What other methods +can you imagine? + +<p>Preemptive scheduling.  To force a thread to release the processor +periodically (in case the thread never calls sleep), a thread manager +can use preemptive scheduling.  The thread manager uses the clock chip +to generate periodically a hardware interrupt, which will cause +control to transfer to the thread manager, which then can decide to +run another thread (e.g., see trap.c). + +<h2>xv6 code examples</h2> + +<p>Thread switching is implemented in xv6 using setjmp and longjmp, +which take a jumpbuf as an argument.  setjmp saves its context in a +jumpbuf for later use by longjmp.  longjmp restores the context saved +by the last setjmp.  It then causes execution to continue as if the +call of setjmp has just returned 1. +<ul> +<li>setjmp saves: ebx, exc, edx, esi, edi, esp, ebp, and eip. +<li>longjmp restores them, and puts 1 in eax! +</ul> + +<p> Example of thread switching: proc[0] switches to scheduler: +<ul> +<li>1359: proc[0] calls iget, which calls sleep, which calls sched. +<li>2261: The stack before the call to setjmp in sched is: +<pre> +CPU 0: +eax: 0x10a144   1089860 +ecx: 0x6c65746e 1818588270 +edx: 0x0        0 +ebx: 0x10a0e0   1089760 +esp: 0x210ea8   2166440 +ebp: 0x210ebc   2166460 +esi: 0x107f20   1081120 +edi: 0x107740   1079104 +eip: 0x1023c9   +eflags 0x12       +cs:  0x8        +ss:  0x10       +ds:  0x10       +es:  0x10       +fs:  0x10       +gs:  0x10       +   00210ea8 [00210ea8]  10111e +   00210eac [00210eac]  210ebc +   00210eb0 [00210eb0]  10239e +   00210eb4 [00210eb4]  0001 +   00210eb8 [00210eb8]  10a0e0 +   00210ebc [00210ebc]  210edc +   00210ec0 [00210ec0]  1024ce +   00210ec4 [00210ec4]  1010101 +   00210ec8 [00210ec8]  1010101 +   00210ecc [00210ecc]  1010101 +   00210ed0 [00210ed0]  107740 +   00210ed4 [00210ed4]  0001 +   00210ed8 [00210ed8]  10cd74 +   00210edc [00210edc]  210f1c +   00210ee0 [00210ee0]  100bbc +   00210ee4 [00210ee4]  107740 +</pre> +<li>2517: stack at beginning of setjmp: +<pre> +CPU 0: +eax: 0x10a144   1089860 +ecx: 0x6c65746e 1818588270 +edx: 0x0        0 +ebx: 0x10a0e0   1089760 +esp: 0x210ea0   2166432 +ebp: 0x210ebc   2166460 +esi: 0x107f20   1081120 +edi: 0x107740   1079104 +eip: 0x102848   +eflags 0x12       +cs:  0x8        +ss:  0x10       +ds:  0x10       +es:  0x10       +fs:  0x10       +gs:  0x10       +   00210ea0 [00210ea0]  1023cf   <--- return address (sched) +   00210ea4 [00210ea4]  10a144 +   00210ea8 [00210ea8]  10111e +   00210eac [00210eac]  210ebc +   00210eb0 [00210eb0]  10239e +   00210eb4 [00210eb4]  0001 +   00210eb8 [00210eb8]  10a0e0 +   00210ebc [00210ebc]  210edc +   00210ec0 [00210ec0]  1024ce +   00210ec4 [00210ec4]  1010101 +   00210ec8 [00210ec8]  1010101 +   00210ecc [00210ecc]  1010101 +   00210ed0 [00210ed0]  107740 +   00210ed4 [00210ed4]  0001 +   00210ed8 [00210ed8]  10cd74 +   00210edc [00210edc]  210f1c +</pre> +<li>2519: What is saved in jmpbuf of proc[0]? +<li>2529: return 0! +<li>2534: What is in jmpbuf of cpu 0?  The stack is as follows: +<pre> +CPU 0: +eax: 0x0        0 +ecx: 0x6c65746e 1818588270 +edx: 0x108aa4   1084068 +ebx: 0x10a0e0   1089760 +esp: 0x210ea0   2166432 +ebp: 0x210ebc   2166460 +esi: 0x107f20   1081120 +edi: 0x107740   1079104 +eip: 0x10286e   +eflags 0x46       +cs:  0x8        +ss:  0x10       +ds:  0x10       +es:  0x10       +fs:  0x10       +gs:  0x10       +   00210ea0 [00210ea0]  1023fe +   00210ea4 [00210ea4]  108aa4 +   00210ea8 [00210ea8]  10111e +   00210eac [00210eac]  210ebc +   00210eb0 [00210eb0]  10239e +   00210eb4 [00210eb4]  0001 +   00210eb8 [00210eb8]  10a0e0 +   00210ebc [00210ebc]  210edc +   00210ec0 [00210ec0]  1024ce +   00210ec4 [00210ec4]  1010101 +   00210ec8 [00210ec8]  1010101 +   00210ecc [00210ecc]  1010101 +   00210ed0 [00210ed0]  107740 +   00210ed4 [00210ed4]  0001 +   00210ed8 [00210ed8]  10cd74 +   00210edc [00210edc]  210f1c +</pre> +<li>2547: return 1! stack looks as follows: +<pre> +CPU 0: +eax: 0x1        1 +ecx: 0x108aa0   1084064 +edx: 0x108aa4   1084068 +ebx: 0x10074    65652 +esp: 0x108d40   1084736 +ebp: 0x108d5c   1084764 +esi: 0x10074    65652 +edi: 0xffde     65502 +eip: 0x102892   +eflags 0x6        +cs:  0x8        +ss:  0x10       +ds:  0x10       +es:  0x10       +fs:  0x10       +gs:  0x10       +   00108d40 [00108d40]  10231c +   00108d44 [00108d44]  10a144 +   00108d48 [00108d48]  0010 +   00108d4c [00108d4c]  0021 +   00108d50 [00108d50]  0000 +   00108d54 [00108d54]  0000 +   00108d58 [00108d58]  10a0e0 +   00108d5c [00108d5c]  0000 +   00108d60 [00108d60]  0001 +   00108d64 [00108d64]  0000 +   00108d68 [00108d68]  0000 +   00108d6c [00108d6c]  0000 +   00108d70 [00108d70]  0000 +   00108d74 [00108d74]  0000 +   00108d78 [00108d78]  0000 +   00108d7c [00108d7c]  0000 +</pre> +<li>2548: where will longjmp return? (answer: 10231c, in scheduler) +<li>2233:Scheduler on each processor selects in a round-robin fashion the +  first runnable process.  Which process will that be? (If we are +  running with one processor.)  (Ans: proc[0].) +<li>2229: what will be saved in cpu's jmpbuf? +<li>What is in proc[0]'s jmpbuf?  +<li>2548: return 1. Stack looks as follows: +<pre> +CPU 0: +eax: 0x1        1 +ecx: 0x6c65746e 1818588270 +edx: 0x0        0 +ebx: 0x10a0e0   1089760 +esp: 0x210ea0   2166432 +ebp: 0x210ebc   2166460 +esi: 0x107f20   1081120 +edi: 0x107740   1079104 +eip: 0x102892   +eflags 0x2        +cs:  0x8        +ss:  0x10       +ds:  0x10       +es:  0x10       +fs:  0x10       +gs:  0x10       +   00210ea0 [00210ea0]  1023cf   <--- return to sleep +   00210ea4 [00210ea4]  108aa4 +   00210ea8 [00210ea8]  10111e +   00210eac [00210eac]  210ebc +   00210eb0 [00210eb0]  10239e +   00210eb4 [00210eb4]  0001 +   00210eb8 [00210eb8]  10a0e0 +   00210ebc [00210ebc]  210edc +   00210ec0 [00210ec0]  1024ce +   00210ec4 [00210ec4]  1010101 +   00210ec8 [00210ec8]  1010101 +   00210ecc [00210ecc]  1010101 +   00210ed0 [00210ed0]  107740 +   00210ed4 [00210ed4]  0001 +   00210ed8 [00210ed8]  10cd74 +   00210edc [00210edc]  210f1c +</pre> +</ul> + +<p>Why switch from proc[0] to the processor stack, and then to +  proc[0]'s stack?  Why not instead run the scheduler on the kernel +  stack of the last process that run on that cpu?  + +<ul> + +<li>If the scheduler wanted to use the process stack, then it couldn't +  have any stack variables live across process scheduling, since +  they'd be different depending on which process just stopped running. + +<li>Suppose process p goes to sleep on CPU1, so CPU1 is idling in +  scheduler() on p's stack. Someone wakes up p. CPU2 decides to run +  p. Now p is running on its stack, and CPU1 is also running on the +  same stack. They will likely scribble on each others' local +  variables, return pointers, etc. + +<li>The same thing happens if CPU1 tries to reuse the process's page +tables to avoid a TLB flush.  If the process gets killed and cleaned +up by the other CPU, now the page tables are wrong.  I think some OSes +actually do this (with appropriate ref counting). + +</ul> + +<p>How is preemptive scheduling implemented in xv6?  Answer see trap.c +  line 2905 through 2917, and the implementation of yield() on sheet +  22. + +<p>How long is a timeslice for a user process?  (possibly very short; +  very important lock is held across context switch!) + +</body> + + + | 
