diff options
Diffstat (limited to 'web/l-threads.html')
-rw-r--r-- | web/l-threads.html | 316 |
1 files changed, 0 insertions, 316 deletions
diff --git a/web/l-threads.html b/web/l-threads.html deleted file mode 100644 index 8587abb..0000000 --- a/web/l-threads.html +++ /dev/null @@ -1,316 +0,0 @@ -<title>L8</title> -<html> -<head> -</head> -<body> - -<h1>Threads, processes, and context switching</h1> - -<p>Required reading: proc.c (focus on scheduler() and sched()), -setjmp.S, and sys_fork (in sysproc.c) - -<h2>Overview</h2> - - -<p>Big picture: more programs than processors. How to share the -limited number of processors among the programs? - -<p>Observation: most programs don't need the processor continuously, -because they frequently have to wait for input (from user, disk, -network, etc.) - -<p>Idea: when one program must wait, it releases the processor, and -gives it to another program. - -<p>Mechanism: thread of computation, an active active computation. A -thread is an abstraction that contains the minimal state that is -necessary to stop an active and an resume it at some point later. -What that state is depends on the processor. On x86, it is the -processor registers (see setjmp.S). - -<p>Address spaces and threads: address spaces and threads are in -principle independent concepts. One can switch from one thread to -another thread in the same address space, or one can switch from one -thread to another thread in another address space. Example: in xv6, -one switches address spaces by switching segmentation registers (see -setupsegs). Does xv6 ever switch from one thread to another in the -same address space? (Answer: yes, v6 switches, for example, from the -scheduler, proc[0], to the kernel part of init, proc[1].) In the JOS -kernel we switch from the kernel thread to a user thread, but we don't -switch kernel space necessarily. - -<p>Process: one address space plus one or more threads of computation. -In xv6 all <i>user</i> programs contain one thread of computation and -one address space, and the concepts of address space and threads of -computation are not separated but bundled together in the concept of a -process. When switching from the kernel program (which has multiple -threads) to a user program, xv6 switches threads (switching from a -kernel stack to a user stack) and address spaces (the hardware uses -the kernel segment registers and the user segment registers). - -<p>xv6 supports the following operations on processes: -<ul> -<li>fork; create a new process, which is a copy of the parent. -<li>exec; execute a program -<li>exit: terminte process -<li>wait: wait for a process to terminate -<li>kill: kill process -<li>sbrk: grow the address space of a process. -</ul> -This interfaces doesn't separate threads and address spaces. For -example, with this interface one cannot create additional threads in -the same threads. Modern Unixes provides additional primitives -(called pthreads, POSIX threads) to create additional threads in a -process and coordinate their activities. - -<p>Scheduling. The thread manager needs a method for deciding which -thread to run if multiple threads are runnable. The xv6 policy is to -run the processes round robin. Why round robin? What other methods -can you imagine? - -<p>Preemptive scheduling. To force a thread to release the processor -periodically (in case the thread never calls sleep), a thread manager -can use preemptive scheduling. The thread manager uses the clock chip -to generate periodically a hardware interrupt, which will cause -control to transfer to the thread manager, which then can decide to -run another thread (e.g., see trap.c). - -<h2>xv6 code examples</h2> - -<p>Thread switching is implemented in xv6 using setjmp and longjmp, -which take a jumpbuf as an argument. setjmp saves its context in a -jumpbuf for later use by longjmp. longjmp restores the context saved -by the last setjmp. It then causes execution to continue as if the -call of setjmp has just returned 1. -<ul> -<li>setjmp saves: ebx, exc, edx, esi, edi, esp, ebp, and eip. -<li>longjmp restores them, and puts 1 in eax! -</ul> - -<p> Example of thread switching: proc[0] switches to scheduler: -<ul> -<li>1359: proc[0] calls iget, which calls sleep, which calls sched. -<li>2261: The stack before the call to setjmp in sched is: -<pre> -CPU 0: -eax: 0x10a144 1089860 -ecx: 0x6c65746e 1818588270 -edx: 0x0 0 -ebx: 0x10a0e0 1089760 -esp: 0x210ea8 2166440 -ebp: 0x210ebc 2166460 -esi: 0x107f20 1081120 -edi: 0x107740 1079104 -eip: 0x1023c9 -eflags 0x12 -cs: 0x8 -ss: 0x10 -ds: 0x10 -es: 0x10 -fs: 0x10 -gs: 0x10 - 00210ea8 [00210ea8] 10111e - 00210eac [00210eac] 210ebc - 00210eb0 [00210eb0] 10239e - 00210eb4 [00210eb4] 0001 - 00210eb8 [00210eb8] 10a0e0 - 00210ebc [00210ebc] 210edc - 00210ec0 [00210ec0] 1024ce - 00210ec4 [00210ec4] 1010101 - 00210ec8 [00210ec8] 1010101 - 00210ecc [00210ecc] 1010101 - 00210ed0 [00210ed0] 107740 - 00210ed4 [00210ed4] 0001 - 00210ed8 [00210ed8] 10cd74 - 00210edc [00210edc] 210f1c - 00210ee0 [00210ee0] 100bbc - 00210ee4 [00210ee4] 107740 -</pre> -<li>2517: stack at beginning of setjmp: -<pre> -CPU 0: -eax: 0x10a144 1089860 -ecx: 0x6c65746e 1818588270 -edx: 0x0 0 -ebx: 0x10a0e0 1089760 -esp: 0x210ea0 2166432 -ebp: 0x210ebc 2166460 -esi: 0x107f20 1081120 -edi: 0x107740 1079104 -eip: 0x102848 -eflags 0x12 -cs: 0x8 -ss: 0x10 -ds: 0x10 -es: 0x10 -fs: 0x10 -gs: 0x10 - 00210ea0 [00210ea0] 1023cf <--- return address (sched) - 00210ea4 [00210ea4] 10a144 - 00210ea8 [00210ea8] 10111e - 00210eac [00210eac] 210ebc - 00210eb0 [00210eb0] 10239e - 00210eb4 [00210eb4] 0001 - 00210eb8 [00210eb8] 10a0e0 - 00210ebc [00210ebc] 210edc - 00210ec0 [00210ec0] 1024ce - 00210ec4 [00210ec4] 1010101 - 00210ec8 [00210ec8] 1010101 - 00210ecc [00210ecc] 1010101 - 00210ed0 [00210ed0] 107740 - 00210ed4 [00210ed4] 0001 - 00210ed8 [00210ed8] 10cd74 - 00210edc [00210edc] 210f1c -</pre> -<li>2519: What is saved in jmpbuf of proc[0]? -<li>2529: return 0! -<li>2534: What is in jmpbuf of cpu 0? The stack is as follows: -<pre> -CPU 0: -eax: 0x0 0 -ecx: 0x6c65746e 1818588270 -edx: 0x108aa4 1084068 -ebx: 0x10a0e0 1089760 -esp: 0x210ea0 2166432 -ebp: 0x210ebc 2166460 -esi: 0x107f20 1081120 -edi: 0x107740 1079104 -eip: 0x10286e -eflags 0x46 -cs: 0x8 -ss: 0x10 -ds: 0x10 -es: 0x10 -fs: 0x10 -gs: 0x10 - 00210ea0 [00210ea0] 1023fe - 00210ea4 [00210ea4] 108aa4 - 00210ea8 [00210ea8] 10111e - 00210eac [00210eac] 210ebc - 00210eb0 [00210eb0] 10239e - 00210eb4 [00210eb4] 0001 - 00210eb8 [00210eb8] 10a0e0 - 00210ebc [00210ebc] 210edc - 00210ec0 [00210ec0] 1024ce - 00210ec4 [00210ec4] 1010101 - 00210ec8 [00210ec8] 1010101 - 00210ecc [00210ecc] 1010101 - 00210ed0 [00210ed0] 107740 - 00210ed4 [00210ed4] 0001 - 00210ed8 [00210ed8] 10cd74 - 00210edc [00210edc] 210f1c -</pre> -<li>2547: return 1! stack looks as follows: -<pre> -CPU 0: -eax: 0x1 1 -ecx: 0x108aa0 1084064 -edx: 0x108aa4 1084068 -ebx: 0x10074 65652 -esp: 0x108d40 1084736 -ebp: 0x108d5c 1084764 -esi: 0x10074 65652 -edi: 0xffde 65502 -eip: 0x102892 -eflags 0x6 -cs: 0x8 -ss: 0x10 -ds: 0x10 -es: 0x10 -fs: 0x10 -gs: 0x10 - 00108d40 [00108d40] 10231c - 00108d44 [00108d44] 10a144 - 00108d48 [00108d48] 0010 - 00108d4c [00108d4c] 0021 - 00108d50 [00108d50] 0000 - 00108d54 [00108d54] 0000 - 00108d58 [00108d58] 10a0e0 - 00108d5c [00108d5c] 0000 - 00108d60 [00108d60] 0001 - 00108d64 [00108d64] 0000 - 00108d68 [00108d68] 0000 - 00108d6c [00108d6c] 0000 - 00108d70 [00108d70] 0000 - 00108d74 [00108d74] 0000 - 00108d78 [00108d78] 0000 - 00108d7c [00108d7c] 0000 -</pre> -<li>2548: where will longjmp return? (answer: 10231c, in scheduler) -<li>2233:Scheduler on each processor selects in a round-robin fashion the - first runnable process. Which process will that be? (If we are - running with one processor.) (Ans: proc[0].) -<li>2229: what will be saved in cpu's jmpbuf? -<li>What is in proc[0]'s jmpbuf? -<li>2548: return 1. Stack looks as follows: -<pre> -CPU 0: -eax: 0x1 1 -ecx: 0x6c65746e 1818588270 -edx: 0x0 0 -ebx: 0x10a0e0 1089760 -esp: 0x210ea0 2166432 -ebp: 0x210ebc 2166460 -esi: 0x107f20 1081120 -edi: 0x107740 1079104 -eip: 0x102892 -eflags 0x2 -cs: 0x8 -ss: 0x10 -ds: 0x10 -es: 0x10 -fs: 0x10 -gs: 0x10 - 00210ea0 [00210ea0] 1023cf <--- return to sleep - 00210ea4 [00210ea4] 108aa4 - 00210ea8 [00210ea8] 10111e - 00210eac [00210eac] 210ebc - 00210eb0 [00210eb0] 10239e - 00210eb4 [00210eb4] 0001 - 00210eb8 [00210eb8] 10a0e0 - 00210ebc [00210ebc] 210edc - 00210ec0 [00210ec0] 1024ce - 00210ec4 [00210ec4] 1010101 - 00210ec8 [00210ec8] 1010101 - 00210ecc [00210ecc] 1010101 - 00210ed0 [00210ed0] 107740 - 00210ed4 [00210ed4] 0001 - 00210ed8 [00210ed8] 10cd74 - 00210edc [00210edc] 210f1c -</pre> -</ul> - -<p>Why switch from proc[0] to the processor stack, and then to - proc[0]'s stack? Why not instead run the scheduler on the kernel - stack of the last process that run on that cpu? - -<ul> - -<li>If the scheduler wanted to use the process stack, then it couldn't - have any stack variables live across process scheduling, since - they'd be different depending on which process just stopped running. - -<li>Suppose process p goes to sleep on CPU1, so CPU1 is idling in - scheduler() on p's stack. Someone wakes up p. CPU2 decides to run - p. Now p is running on its stack, and CPU1 is also running on the - same stack. They will likely scribble on each others' local - variables, return pointers, etc. - -<li>The same thing happens if CPU1 tries to reuse the process's page -tables to avoid a TLB flush. If the process gets killed and cleaned -up by the other CPU, now the page tables are wrong. I think some OSes -actually do this (with appropriate ref counting). - -</ul> - -<p>How is preemptive scheduling implemented in xv6? Answer see trap.c - line 2905 through 2917, and the implementation of yield() on sheet - 22. - -<p>How long is a timeslice for a user process? (possibly very short; - very important lock is held across context switch!) - -</body> - - - |