summaryrefslogtreecommitdiff
path: root/web/l-threads.html
diff options
context:
space:
mode:
Diffstat (limited to 'web/l-threads.html')
-rw-r--r--web/l-threads.html316
1 files changed, 0 insertions, 316 deletions
diff --git a/web/l-threads.html b/web/l-threads.html
deleted file mode 100644
index 8587abb..0000000
--- a/web/l-threads.html
+++ /dev/null
@@ -1,316 +0,0 @@
-<title>L8</title>
-<html>
-<head>
-</head>
-<body>
-
-<h1>Threads, processes, and context switching</h1>
-
-<p>Required reading: proc.c (focus on scheduler() and sched()),
-setjmp.S, and sys_fork (in sysproc.c)
-
-<h2>Overview</h2>
-
-
-<p>Big picture: more programs than processors. How to share the
-limited number of processors among the programs?
-
-<p>Observation: most programs don't need the processor continuously,
-because they frequently have to wait for input (from user, disk,
-network, etc.)
-
-<p>Idea: when one program must wait, it releases the processor, and
-gives it to another program.
-
-<p>Mechanism: thread of computation, an active active computation. A
-thread is an abstraction that contains the minimal state that is
-necessary to stop an active and an resume it at some point later.
-What that state is depends on the processor. On x86, it is the
-processor registers (see setjmp.S).
-
-<p>Address spaces and threads: address spaces and threads are in
-principle independent concepts. One can switch from one thread to
-another thread in the same address space, or one can switch from one
-thread to another thread in another address space. Example: in xv6,
-one switches address spaces by switching segmentation registers (see
-setupsegs). Does xv6 ever switch from one thread to another in the
-same address space? (Answer: yes, v6 switches, for example, from the
-scheduler, proc[0], to the kernel part of init, proc[1].) In the JOS
-kernel we switch from the kernel thread to a user thread, but we don't
-switch kernel space necessarily.
-
-<p>Process: one address space plus one or more threads of computation.
-In xv6 all <i>user</i> programs contain one thread of computation and
-one address space, and the concepts of address space and threads of
-computation are not separated but bundled together in the concept of a
-process. When switching from the kernel program (which has multiple
-threads) to a user program, xv6 switches threads (switching from a
-kernel stack to a user stack) and address spaces (the hardware uses
-the kernel segment registers and the user segment registers).
-
-<p>xv6 supports the following operations on processes:
-<ul>
-<li>fork; create a new process, which is a copy of the parent.
-<li>exec; execute a program
-<li>exit: terminte process
-<li>wait: wait for a process to terminate
-<li>kill: kill process
-<li>sbrk: grow the address space of a process.
-</ul>
-This interfaces doesn't separate threads and address spaces. For
-example, with this interface one cannot create additional threads in
-the same threads. Modern Unixes provides additional primitives
-(called pthreads, POSIX threads) to create additional threads in a
-process and coordinate their activities.
-
-<p>Scheduling. The thread manager needs a method for deciding which
-thread to run if multiple threads are runnable. The xv6 policy is to
-run the processes round robin. Why round robin? What other methods
-can you imagine?
-
-<p>Preemptive scheduling. To force a thread to release the processor
-periodically (in case the thread never calls sleep), a thread manager
-can use preemptive scheduling. The thread manager uses the clock chip
-to generate periodically a hardware interrupt, which will cause
-control to transfer to the thread manager, which then can decide to
-run another thread (e.g., see trap.c).
-
-<h2>xv6 code examples</h2>
-
-<p>Thread switching is implemented in xv6 using setjmp and longjmp,
-which take a jumpbuf as an argument. setjmp saves its context in a
-jumpbuf for later use by longjmp. longjmp restores the context saved
-by the last setjmp. It then causes execution to continue as if the
-call of setjmp has just returned 1.
-<ul>
-<li>setjmp saves: ebx, exc, edx, esi, edi, esp, ebp, and eip.
-<li>longjmp restores them, and puts 1 in eax!
-</ul>
-
-<p> Example of thread switching: proc[0] switches to scheduler:
-<ul>
-<li>1359: proc[0] calls iget, which calls sleep, which calls sched.
-<li>2261: The stack before the call to setjmp in sched is:
-<pre>
-CPU 0:
-eax: 0x10a144 1089860
-ecx: 0x6c65746e 1818588270
-edx: 0x0 0
-ebx: 0x10a0e0 1089760
-esp: 0x210ea8 2166440
-ebp: 0x210ebc 2166460
-esi: 0x107f20 1081120
-edi: 0x107740 1079104
-eip: 0x1023c9
-eflags 0x12
-cs: 0x8
-ss: 0x10
-ds: 0x10
-es: 0x10
-fs: 0x10
-gs: 0x10
- 00210ea8 [00210ea8] 10111e
- 00210eac [00210eac] 210ebc
- 00210eb0 [00210eb0] 10239e
- 00210eb4 [00210eb4] 0001
- 00210eb8 [00210eb8] 10a0e0
- 00210ebc [00210ebc] 210edc
- 00210ec0 [00210ec0] 1024ce
- 00210ec4 [00210ec4] 1010101
- 00210ec8 [00210ec8] 1010101
- 00210ecc [00210ecc] 1010101
- 00210ed0 [00210ed0] 107740
- 00210ed4 [00210ed4] 0001
- 00210ed8 [00210ed8] 10cd74
- 00210edc [00210edc] 210f1c
- 00210ee0 [00210ee0] 100bbc
- 00210ee4 [00210ee4] 107740
-</pre>
-<li>2517: stack at beginning of setjmp:
-<pre>
-CPU 0:
-eax: 0x10a144 1089860
-ecx: 0x6c65746e 1818588270
-edx: 0x0 0
-ebx: 0x10a0e0 1089760
-esp: 0x210ea0 2166432
-ebp: 0x210ebc 2166460
-esi: 0x107f20 1081120
-edi: 0x107740 1079104
-eip: 0x102848
-eflags 0x12
-cs: 0x8
-ss: 0x10
-ds: 0x10
-es: 0x10
-fs: 0x10
-gs: 0x10
- 00210ea0 [00210ea0] 1023cf <--- return address (sched)
- 00210ea4 [00210ea4] 10a144
- 00210ea8 [00210ea8] 10111e
- 00210eac [00210eac] 210ebc
- 00210eb0 [00210eb0] 10239e
- 00210eb4 [00210eb4] 0001
- 00210eb8 [00210eb8] 10a0e0
- 00210ebc [00210ebc] 210edc
- 00210ec0 [00210ec0] 1024ce
- 00210ec4 [00210ec4] 1010101
- 00210ec8 [00210ec8] 1010101
- 00210ecc [00210ecc] 1010101
- 00210ed0 [00210ed0] 107740
- 00210ed4 [00210ed4] 0001
- 00210ed8 [00210ed8] 10cd74
- 00210edc [00210edc] 210f1c
-</pre>
-<li>2519: What is saved in jmpbuf of proc[0]?
-<li>2529: return 0!
-<li>2534: What is in jmpbuf of cpu 0? The stack is as follows:
-<pre>
-CPU 0:
-eax: 0x0 0
-ecx: 0x6c65746e 1818588270
-edx: 0x108aa4 1084068
-ebx: 0x10a0e0 1089760
-esp: 0x210ea0 2166432
-ebp: 0x210ebc 2166460
-esi: 0x107f20 1081120
-edi: 0x107740 1079104
-eip: 0x10286e
-eflags 0x46
-cs: 0x8
-ss: 0x10
-ds: 0x10
-es: 0x10
-fs: 0x10
-gs: 0x10
- 00210ea0 [00210ea0] 1023fe
- 00210ea4 [00210ea4] 108aa4
- 00210ea8 [00210ea8] 10111e
- 00210eac [00210eac] 210ebc
- 00210eb0 [00210eb0] 10239e
- 00210eb4 [00210eb4] 0001
- 00210eb8 [00210eb8] 10a0e0
- 00210ebc [00210ebc] 210edc
- 00210ec0 [00210ec0] 1024ce
- 00210ec4 [00210ec4] 1010101
- 00210ec8 [00210ec8] 1010101
- 00210ecc [00210ecc] 1010101
- 00210ed0 [00210ed0] 107740
- 00210ed4 [00210ed4] 0001
- 00210ed8 [00210ed8] 10cd74
- 00210edc [00210edc] 210f1c
-</pre>
-<li>2547: return 1! stack looks as follows:
-<pre>
-CPU 0:
-eax: 0x1 1
-ecx: 0x108aa0 1084064
-edx: 0x108aa4 1084068
-ebx: 0x10074 65652
-esp: 0x108d40 1084736
-ebp: 0x108d5c 1084764
-esi: 0x10074 65652
-edi: 0xffde 65502
-eip: 0x102892
-eflags 0x6
-cs: 0x8
-ss: 0x10
-ds: 0x10
-es: 0x10
-fs: 0x10
-gs: 0x10
- 00108d40 [00108d40] 10231c
- 00108d44 [00108d44] 10a144
- 00108d48 [00108d48] 0010
- 00108d4c [00108d4c] 0021
- 00108d50 [00108d50] 0000
- 00108d54 [00108d54] 0000
- 00108d58 [00108d58] 10a0e0
- 00108d5c [00108d5c] 0000
- 00108d60 [00108d60] 0001
- 00108d64 [00108d64] 0000
- 00108d68 [00108d68] 0000
- 00108d6c [00108d6c] 0000
- 00108d70 [00108d70] 0000
- 00108d74 [00108d74] 0000
- 00108d78 [00108d78] 0000
- 00108d7c [00108d7c] 0000
-</pre>
-<li>2548: where will longjmp return? (answer: 10231c, in scheduler)
-<li>2233:Scheduler on each processor selects in a round-robin fashion the
- first runnable process. Which process will that be? (If we are
- running with one processor.) (Ans: proc[0].)
-<li>2229: what will be saved in cpu's jmpbuf?
-<li>What is in proc[0]'s jmpbuf?
-<li>2548: return 1. Stack looks as follows:
-<pre>
-CPU 0:
-eax: 0x1 1
-ecx: 0x6c65746e 1818588270
-edx: 0x0 0
-ebx: 0x10a0e0 1089760
-esp: 0x210ea0 2166432
-ebp: 0x210ebc 2166460
-esi: 0x107f20 1081120
-edi: 0x107740 1079104
-eip: 0x102892
-eflags 0x2
-cs: 0x8
-ss: 0x10
-ds: 0x10
-es: 0x10
-fs: 0x10
-gs: 0x10
- 00210ea0 [00210ea0] 1023cf <--- return to sleep
- 00210ea4 [00210ea4] 108aa4
- 00210ea8 [00210ea8] 10111e
- 00210eac [00210eac] 210ebc
- 00210eb0 [00210eb0] 10239e
- 00210eb4 [00210eb4] 0001
- 00210eb8 [00210eb8] 10a0e0
- 00210ebc [00210ebc] 210edc
- 00210ec0 [00210ec0] 1024ce
- 00210ec4 [00210ec4] 1010101
- 00210ec8 [00210ec8] 1010101
- 00210ecc [00210ecc] 1010101
- 00210ed0 [00210ed0] 107740
- 00210ed4 [00210ed4] 0001
- 00210ed8 [00210ed8] 10cd74
- 00210edc [00210edc] 210f1c
-</pre>
-</ul>
-
-<p>Why switch from proc[0] to the processor stack, and then to
- proc[0]'s stack? Why not instead run the scheduler on the kernel
- stack of the last process that run on that cpu?
-
-<ul>
-
-<li>If the scheduler wanted to use the process stack, then it couldn't
- have any stack variables live across process scheduling, since
- they'd be different depending on which process just stopped running.
-
-<li>Suppose process p goes to sleep on CPU1, so CPU1 is idling in
- scheduler() on p's stack. Someone wakes up p. CPU2 decides to run
- p. Now p is running on its stack, and CPU1 is also running on the
- same stack. They will likely scribble on each others' local
- variables, return pointers, etc.
-
-<li>The same thing happens if CPU1 tries to reuse the process's page
-tables to avoid a TLB flush. If the process gets killed and cleaned
-up by the other CPU, now the page tables are wrong. I think some OSes
-actually do this (with appropriate ref counting).
-
-</ul>
-
-<p>How is preemptive scheduling implemented in xv6? Answer see trap.c
- line 2905 through 2917, and the implementation of yield() on sheet
- 22.
-
-<p>How long is a timeslice for a user process? (possibly very short;
- very important lock is held across context switch!)
-
-</body>
-
-
-