summaryrefslogtreecommitdiff
path: root/web/l2.html
diff options
context:
space:
mode:
Diffstat (limited to 'web/l2.html')
-rw-r--r--web/l2.html494
1 files changed, 494 insertions, 0 deletions
diff --git a/web/l2.html b/web/l2.html
new file mode 100644
index 0000000..e183d5a
--- /dev/null
+++ b/web/l2.html
@@ -0,0 +1,494 @@
+<html>
+<head>
+<title>L2</title>
+</head>
+<body>
+
+<h1>6.828 Lecture Notes: x86 and PC architecture</h1>
+
+<h2>Outline</h2>
+<ul>
+<li>PC architecture
+<li>x86 instruction set
+<li>gcc calling conventions
+<li>PC emulation
+</ul>
+
+<h2>PC architecture</h2>
+
+<ul>
+<li>A full PC has:
+ <ul>
+ <li>an x86 CPU with registers, execution unit, and memory management
+ <li>CPU chip pins include address and data signals
+ <li>memory
+ <li>disk
+ <li>keyboard
+ <li>display
+ <li>other resources: BIOS ROM, clock, ...
+ </ul>
+
+<li>We will start with the original 16-bit 8086 CPU (1978)
+<li>CPU runs instructions:
+<pre>
+for(;;){
+ run next instruction
+}
+</pre>
+
+<li>Needs work space: registers
+ <ul>
+ <li>four 16-bit data registers: AX, CX, DX, BX
+ <li>each in two 8-bit halves, e.g. AH and AL
+ <li>very fast, very few
+ </ul>
+<li>More work space: memory
+ <ul>
+ <li>CPU sends out address on address lines (wires, one bit per wire)
+ <li>Data comes back on data lines
+ <li><i>or</i> data is written to data lines
+ </ul>
+
+<li>Add address registers: pointers into memory
+ <ul>
+ <li>SP - stack pointer
+ <li>BP - frame base pointer
+ <li>SI - source index
+ <li>DI - destination index
+ </ul>
+
+<li>Instructions are in memory too!
+ <ul>
+ <li>IP - instruction pointer (PC on PDP-11, everything else)
+ <li>increment after running each instruction
+ <li>can be modified by CALL, RET, JMP, conditional jumps
+ </ul>
+
+<li>Want conditional jumps
+ <ul>
+ <li>FLAGS - various condition codes
+ <ul>
+ <li>whether last arithmetic operation overflowed
+ <li> ... was positive/negative
+ <li> ... was [not] zero
+ <li> ... carry/borrow on add/subtract
+ <li> ... overflow
+ <li> ... etc.
+ <li>whether interrupts are enabled
+ <li>direction of data copy instructions
+ </ul>
+ <li>JP, JN, J[N]Z, J[N]C, J[N]O ...
+ </ul>
+
+<li>Still not interesting - need I/O to interact with outside world
+ <ul>
+ <li>Original PC architecture: use dedicated <i>I/O space</i>
+ <ul>
+ <li>Works same as memory accesses but set I/O signal
+ <li>Only 1024 I/O addresses
+ <li>Example: write a byte to line printer:
+<pre>
+#define DATA_PORT 0x378
+#define STATUS_PORT 0x379
+#define BUSY 0x80
+#define CONTROL_PORT 0x37A
+#define STROBE 0x01
+void
+lpt_putc(int c)
+{
+ /* wait for printer to consume previous byte */
+ while((inb(STATUS_PORT) & BUSY) == 0)
+ ;
+
+ /* put the byte on the parallel lines */
+ outb(DATA_PORT, c);
+
+ /* tell the printer to look at the data */
+ outb(CONTROL_PORT, STROBE);
+ outb(CONTROL_PORT, 0);
+}
+<pre>
+ </ul>
+
+<li>Memory-Mapped I/O
+ <ul>
+ <li>Use normal physical memory addresses
+ <ul>
+ <li>Gets around limited size of I/O address space
+ <li>No need for special instructions
+ <li>System controller routes to appropriate device
+ </ul>
+ <li>Works like ``magic'' memory:
+ <ul>
+ <li> <i>Addressed</i> and <i>accessed</i> like memory,
+ but ...
+ <li> ... does not <i>behave</i> like memory!
+ <li> Reads and writes can have ``side effects''
+ <li> Read results can change due to external events
+ </ul>
+ </ul>
+</ul>
+
+
+<li>What if we want to use more than 2^16 bytes of memory?
+ <ul>
+ <li>8086 has 20-bit physical addresses, can have 1 Meg RAM
+ <li>each segment is a 2^16 byte window into physical memory
+ <li>virtual to physical translation: pa = va + seg*16
+ <li>the segment is usually implicit, from a segment register
+ <li>CS - code segment (for fetches via IP)
+ <li>SS - stack segment (for load/store via SP and BP)
+ <li>DS - data segment (for load/store via other registers)
+ <li>ES - another data segment (destination for string operations)
+ <li>tricky: can't use the 16-bit address of a stack variable as a pointer
+ <li>but a <i>far pointer</i> includes full segment:offset (16 + 16 bits)
+ </ul>
+
+<li>But 8086's 16-bit addresses and data were still painfully small
+ <ul>
+ <li>80386 added support for 32-bit data and addresses (1985)
+ <li>boots in 16-bit mode, boot.S switches to 32-bit mode
+ <li>registers are 32 bits wide, called EAX rather than AX
+ <li>operands and addresses are also 32 bits, e.g. ADD does 32-bit arithmetic
+ <li>prefix 0x66 gets you 16-bit mode: MOVW is really 0x66 MOVW
+ <li>the .code32 in boot.S tells assembler to generate 0x66 for e.g. MOVW
+ <li>80386 also changed segments and added paged memory...
+ </ul>
+
+</ul>
+
+<h2>x86 Physical Memory Map</h2>
+
+<ul>
+<li>The physical address space mostly looks like ordinary RAM
+<li>Except some low-memory addresses actually refer to other things
+<li>Writes to VGA memory appear on the screen
+<li>Reset or power-on jumps to ROM at 0x000ffff0
+</ul>
+
+<pre>
++------------------+ <- 0xFFFFFFFF (4GB)
+| 32-bit |
+| memory mapped |
+| devices |
+| |
+/\/\/\/\/\/\/\/\/\/\
+
+/\/\/\/\/\/\/\/\/\/\
+| |
+| Unused |
+| |
++------------------+ <- depends on amount of RAM
+| |
+| |
+| Extended Memory |
+| |
+| |
++------------------+ <- 0x00100000 (1MB)
+| BIOS ROM |
++------------------+ <- 0x000F0000 (960KB)
+| 16-bit devices, |
+| expansion ROMs |
++------------------+ <- 0x000C0000 (768KB)
+| VGA Display |
++------------------+ <- 0x000A0000 (640KB)
+| |
+| Low Memory |
+| |
++------------------+ <- 0x00000000
+</pre>
+
+<h2>x86 Instruction Set</h2>
+
+<ul>
+<li>Two-operand instruction set
+ <ul>
+ <li>Intel syntax: <tt>op dst, src</tt>
+ <li>AT&amp;T (gcc/gas) syntax: <tt>op src, dst</tt>
+ <ul>
+ <li>uses b, w, l suffix on instructions to specify size of operands
+ </ul>
+ <li>Operands are registers, constant, memory via register, memory via constant
+ <li> Examples:
+ <table cellspacing=5>
+ <tr><td><u>AT&amp;T syntax</u> <td><u>"C"-ish equivalent</u>
+ <tr><td>movl %eax, %edx <td>edx = eax; <td><i>register mode</i>
+ <tr><td>movl $0x123, %edx <td>edx = 0x123; <td><i>immediate</i>
+ <tr><td>movl 0x123, %edx <td>edx = *(int32_t*)0x123; <td><i>direct</i>
+ <tr><td>movl (%ebx), %edx <td>edx = *(int32_t*)ebx; <td><i>indirect</i>
+ <tr><td>movl 4(%ebx), %edx <td>edx = *(int32_t*)(ebx+4); <td><i>displaced</i>
+ </table>
+ </ul>
+
+<li>Instruction classes
+ <ul>
+ <li>data movement: MOV, PUSH, POP, ...
+ <li>arithmetic: TEST, SHL, ADD, AND, ...
+ <li>i/o: IN, OUT, ...
+ <li>control: JMP, JZ, JNZ, CALL, RET
+ <li>string: REP MOVSB, ...
+ <li>system: IRET, INT
+ </ul>
+
+<li>Intel architecture manual Volume 2 is <i>the</i> reference
+
+</ul>
+
+<h2>gcc x86 calling conventions</h2>
+
+<ul>
+<li>x86 dictates that stack grows down:
+ <table cellspacing=5>
+ <tr><td><u>Example instruction</u> <td><u>What it does</u>
+ <tr><td>pushl %eax
+ <td>
+ subl $4, %esp <br>
+ movl %eax, (%esp) <br>
+ <tr><td>popl %eax
+ <td>
+ movl (%esp), %eax <br>
+ addl $4, %esp <br>
+ <tr><td>call $0x12345
+ <td>
+ pushl %eip <sup>(*)</sup> <br>
+ movl $0x12345, %eip <sup>(*)</sup> <br>
+ <tr><td>ret
+ <td>
+ popl %eip <sup>(*)</sup>
+ </table>
+ (*) <i>Not real instructions</i>
+
+<li>GCC dictates how the stack is used.
+ Contract between caller and callee on x86:
+ <ul>
+ <li>after call instruction:
+ <ul>
+ <li>%eip points at first instruction of function
+ <li>%esp+4 points at first argument
+ <li>%esp points at return address
+ </ul>
+ <li>after ret instruction:
+ <ul>
+ <li>%eip contains return address
+ <li>%esp points at arguments pushed by caller
+ <li>called function may have trashed arguments
+ <li>%eax contains return value
+ (or trash if function is <tt>void</tt>)
+ <li>%ecx, %edx may be trashed
+ <li>%ebp, %ebx, %esi, %edi must contain contents from time of <tt>call</tt>
+ </ul>
+ <li>Terminology:
+ <ul>
+ <li>%eax, %ecx, %edx are "caller save" registers
+ <li>%ebp, %ebx, %esi, %edi are "callee save" registers
+ </ul>
+ </ul>
+
+<li>Functions can do anything that doesn't violate contract.
+ By convention, GCC does more:
+ <ul>
+ <li>each function has a stack frame marked by %ebp, %esp
+ <pre>
+ +------------+ |
+ | arg 2 | \
+ +------------+ &gt;- previous function's stack frame
+ | arg 1 | /
+ +------------+ |
+ | ret %eip | /
+ +============+
+ | saved %ebp | \
+ %ebp-&gt; +------------+ |
+ | | |
+ | local | \
+ | variables, | &gt;- current function's stack frame
+ | etc. | /
+ | | |
+ | | |
+ %esp-&gt; +------------+ /
+ </pre>
+ <li>%esp can move to make stack frame bigger, smaller
+ <li>%ebp points at saved %ebp from previous function,
+ chain to walk stack
+ <li>function prologue:
+ <pre>
+ pushl %ebp
+ movl %esp, %ebp
+ </pre>
+ <li>function epilogue:
+ <pre>
+ movl %ebp, %esp
+ popl %ebp
+ </pre>
+ or
+ <pre>
+ leave
+ </pre>
+ </ul>
+
+<li>Big example:
+ <ul>
+ <li>C code
+ <pre>
+ int main(void) { return f(8)+1; }
+ int f(int x) { return g(x); }
+ int g(int x) { return x+3; }
+ </pre>
+ <li>assembler
+ <pre>
+ _main:
+ <i>prologue</i>
+ pushl %ebp
+ movl %esp, %ebp
+ <i>body</i>
+ pushl $8
+ call _f
+ addl $1, %eax
+ <i>epilogue</i>
+ movl %ebp, %esp
+ popl %ebp
+ ret
+ _f:
+ <i>prologue</i>
+ pushl %ebp
+ movl %esp, %ebp
+ <i>body</i>
+ pushl 8(%esp)
+ call _g
+ <i>epilogue</i>
+ movl %ebp, %esp
+ popl %ebp
+ ret
+
+ _g:
+ <i>prologue</i>
+ pushl %ebp
+ movl %esp, %ebp
+ <i>save %ebx</i>
+ pushl %ebx
+ <i>body</i>
+ movl 8(%ebp), %ebx
+ addl $3, %ebx
+ movl %ebx, %eax
+ <i>restore %ebx</i>
+ popl %ebx
+ <i>epilogue</i>
+ movl %ebp, %esp
+ popl %ebp
+ ret
+ </pre>
+ </ul>
+
+<li>Super-small <tt>_g</tt>:
+ <pre>
+ _g:
+ movl 4(%esp), %eax
+ addl $3, %eax
+ ret
+ </pre>
+
+<li>Compiling, linking, loading:
+ <ul>
+ <li> <i>Compiler</i> takes C source code (ASCII text),
+ produces assembly language (also ASCII text)
+ <li> <i>Assembler</i> takes assembly language (ASCII text),
+ produces <tt>.o</tt> file (binary, machine-readable!)
+ <li> <i>Linker</i> takse multiple '<tt>.o</tt>'s,
+ produces a single <i>program image</i> (binary)
+ <li> <i>Loader</i> loads the program image into memory
+ at run-time and starts it executing
+ </ul>
+</ul>
+
+
+<h2>PC emulation</h2>
+
+<ul>
+<li> Emulator like Bochs works by
+ <ul>
+ <li> doing exactly what a real PC would do,
+ <li> only implemented in software rather than hardware!
+ </ul>
+<li> Runs as a normal process in a "host" operating system (e.g., Linux)
+<li> Uses normal process storage to hold emulated hardware state:
+ e.g.,
+ <ul>
+ <li> Hold emulated CPU registers in global variables
+ <pre>
+ int32_t regs[8];
+ #define REG_EAX 1;
+ #define REG_EBX 2;
+ #define REG_ECX 3;
+ ...
+ int32_t eip;
+ int16_t segregs[4];
+ ...
+ </pre>
+ <li> <tt>malloc</tt> a big chunk of (virtual) process memory
+ to hold emulated PC's (physical) memory
+ </ul>
+<li> Execute instructions by simulating them in a loop:
+ <pre>
+ for (;;) {
+ read_instruction();
+ switch (decode_instruction_opcode()) {
+ case OPCODE_ADD:
+ int src = decode_src_reg();
+ int dst = decode_dst_reg();
+ regs[dst] = regs[dst] + regs[src];
+ break;
+ case OPCODE_SUB:
+ int src = decode_src_reg();
+ int dst = decode_dst_reg();
+ regs[dst] = regs[dst] - regs[src];
+ break;
+ ...
+ }
+ eip += instruction_length;
+ }
+ </pre>
+
+<li> Simulate PC's physical memory map
+ by decoding emulated "physical" addresses just like a PC would:
+ <pre>
+ #define KB 1024
+ #define MB 1024*1024
+
+ #define LOW_MEMORY 640*KB
+ #define EXT_MEMORY 10*MB
+
+ uint8_t low_mem[LOW_MEMORY];
+ uint8_t ext_mem[EXT_MEMORY];
+ uint8_t bios_rom[64*KB];
+
+ uint8_t read_byte(uint32_t phys_addr) {
+ if (phys_addr < LOW_MEMORY)
+ return low_mem[phys_addr];
+ else if (phys_addr >= 960*KB && phys_addr < 1*MB)
+ return rom_bios[phys_addr - 960*KB];
+ else if (phys_addr >= 1*MB && phys_addr < 1*MB+EXT_MEMORY) {
+ return ext_mem[phys_addr-1*MB];
+ else ...
+ }
+
+ void write_byte(uint32_t phys_addr, uint8_t val) {
+ if (phys_addr < LOW_MEMORY)
+ low_mem[phys_addr] = val;
+ else if (phys_addr >= 960*KB && phys_addr < 1*MB)
+ ; /* ignore attempted write to ROM! */
+ else if (phys_addr >= 1*MB && phys_addr < 1*MB+EXT_MEMORY) {
+ ext_mem[phys_addr-1*MB] = val;
+ else ...
+ }
+ </pre>
+<li> Simulate I/O devices, etc., by detecting accesses to
+ "special" memory and I/O space and emulating the correct behavior:
+ e.g.,
+ <ul>
+ <li> Reads/writes to emulated hard disk
+ transformed into reads/writes of a file on the host system
+ <li> Writes to emulated VGA display hardware
+ transformed into drawing into an X window
+ <li> Reads from emulated PC keyboard
+ transformed into reads from X input event queue
+ </ul>
+</ul>