// Mutual exclusion spin locks. #include "types.h" #include "param.h" #include "memlayout.h" #include "spinlock.h" #include "riscv.h" #include "proc.h" #include "defs.h" #ifdef LAB_LOCK #define NLOCK 500 static struct spinlock *locks[NLOCK]; struct spinlock lock_locks; void freelock(struct spinlock *lk) { acquire(&lock_locks); int i; for (i = 0; i < NLOCK; i++) { if(locks[i] == lk) { locks[i] = 0; break; } } release(&lock_locks); } static void findslot(struct spinlock *lk) { acquire(&lock_locks); int i; for (i = 0; i < NLOCK; i++) { if(locks[i] == 0) { locks[i] = lk; release(&lock_locks); return; } } panic("findslot"); } #endif void initlock(struct spinlock *lk, char *name) { lk->name = name; lk->locked = 0; lk->cpu = 0; #ifdef LAB_LOCK lk->nts = 0; lk->n = 0; findslot(lk); #endif } // Acquire the lock. // Loops (spins) until the lock is acquired. void acquire(struct spinlock *lk) { push_off(); // disable interrupts to avoid deadlock. if(holding(lk)) panic("acquire"); #ifdef LAB_LOCK __sync_fetch_and_add(&(lk->n), 1); #endif // On RISC-V, sync_lock_test_and_set turns into an atomic swap: // a5 = 1 // s1 = &lk->locked // amoswap.w.aq a5, a5, (s1) while(__sync_lock_test_and_set(&lk->locked, 1) != 0) { #ifdef LAB_LOCK __sync_fetch_and_add(&(lk->nts), 1); #else ; #endif } // Tell the C compiler and the processor to not move loads or stores // past this point, to ensure that the critical section's memory // references happen strictly after the lock is acquired. // On RISC-V, this emits a fence instruction. __sync_synchronize(); // Record info about lock acquisition for holding() and debugging. lk->cpu = mycpu(); } // Release the lock. void release(struct spinlock *lk) { if(!holding(lk)) panic("release"); lk->cpu = 0; // Tell the C compiler and the CPU to not move loads or stores // past this point, to ensure that all the stores in the critical // section are visible to other CPUs before the lock is released, // and that loads in the critical section occur strictly before // the lock is released. // On RISC-V, this emits a fence instruction. __sync_synchronize(); // Release the lock, equivalent to lk->locked = 0. // This code doesn't use a C assignment, since the C standard // implies that an assignment might be implemented with // multiple store instructions. // On RISC-V, sync_lock_release turns into an atomic swap: // s1 = &lk->locked // amoswap.w zero, zero, (s1) __sync_lock_release(&lk->locked); pop_off(); } // Check whether this cpu is holding the lock. // Interrupts must be off. int holding(struct spinlock *lk) { int r; r = (lk->locked && lk->cpu == mycpu()); return r; } // push_off/pop_off are like intr_off()/intr_on() except that they are matched: // it takes two pop_off()s to undo two push_off()s. Also, if interrupts // are initially off, then push_off, pop_off leaves them off. void push_off(void) { int old = intr_get(); intr_off(); if(mycpu()->noff == 0) mycpu()->intena = old; mycpu()->noff += 1; } void pop_off(void) { struct cpu *c = mycpu(); if(intr_get()) panic("pop_off - interruptible"); if(c->noff < 1) panic("pop_off"); c->noff -= 1; if(c->noff == 0 && c->intena) intr_on(); } // Read a shared 32-bit value without holding a lock int atomic_read4(int *addr) { uint32 val; __atomic_load(addr, &val, __ATOMIC_SEQ_CST); return val; } #ifdef LAB_LOCK int snprint_lock(char *buf, int sz, struct spinlock *lk) { int n = 0; if(lk->n > 0) { n = snprintf(buf, sz, "lock: %s: #test-and-set %d #acquire() %d\n", lk->name, lk->nts, lk->n); } return n; } int statslock(char *buf, int sz) { int n; int tot = 0; acquire(&lock_locks); n = snprintf(buf, sz, "--- lock kmem/bcache stats\n"); for(int i = 0; i < NLOCK; i++) { if(locks[i] == 0) break; if(strncmp(locks[i]->name, "bcache", strlen("bcache")) == 0 || strncmp(locks[i]->name, "kmem", strlen("kmem")) == 0) { tot += locks[i]->nts; n += snprint_lock(buf +n, sz-n, locks[i]); } } n += snprintf(buf+n, sz-n, "--- top 5 contended locks:\n"); int last = 100000000; // stupid way to compute top 5 contended locks for(int t = 0; t < 5; t++) { int top = 0; for(int i = 0; i < NLOCK; i++) { if(locks[i] == 0) break; if(locks[i]->nts > locks[top]->nts && locks[i]->nts < last) { top = i; } } n += snprint_lock(buf+n, sz-n, locks[top]); last = locks[top]->nts; } n += snprintf(buf+n, sz-n, "tot= %d\n", tot); release(&lock_locks); return n; } #endif