1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
#include "kernel/types.h"
#include "kernel/stat.h"
#include "user/user.h"
/* Possible states of a thread: */
#define FREE 0x0
#define RUNNING 0x1
#define RUNNABLE 0x2
#define STACK_SIZE 8192
#define MAX_THREAD 4
// Saved registers for kernel context switches.
struct context {
uint64 ra;
uint64 sp;
// callee-saved
uint64 s0;
uint64 s1;
uint64 s2;
uint64 s3;
uint64 s4;
uint64 s5;
uint64 s6;
uint64 s7;
uint64 s8;
uint64 s9;
uint64 s10;
uint64 s11;
};
struct thread {
char stack[STACK_SIZE]; /* the thread's stack */
int state; /* FREE, RUNNING, RUNNABLE */
struct context context; /* saved registers to switch thru threads */
};
struct thread all_thread[MAX_THREAD];
struct thread *current_thread;
extern void thread_switch(uint64, uint64);
void
thread_init(void)
{
// main() is thread 0, which will make the first invocation to
// thread_schedule(). It needs a stack so that the first thread_switch() can
// save thread 0's state.
current_thread = &all_thread[0];
current_thread->state = RUNNING;
}
void
thread_schedule(void)
{
struct thread *t, *next_thread;
/* Find another runnable thread. */
next_thread = 0;
t = current_thread + 1;
for(int i = 0; i < MAX_THREAD; i++){
if(t >= all_thread + MAX_THREAD)
t = all_thread;
if(t->state == RUNNABLE) {
next_thread = t;
break;
}
t = t + 1;
}
if (next_thread == 0) {
printf("thread_schedule: no runnable threads\n");
exit(-1);
}
if (current_thread != next_thread) { /* switch threads? */
next_thread->state = RUNNING;
t = current_thread;
current_thread = next_thread;
// Invoke thread_switch to switch from t to next_thread:
thread_switch((uint64)&t->context, (uint64)&next_thread->context);
} else
next_thread = 0;
}
void
thread_create(void (*func)())
{
struct thread *t;
for (t = all_thread; t < all_thread + MAX_THREAD; t++) {
if (t->state == FREE) break;
}
t->state = RUNNABLE;
// Set up new context to start executing at func
memset(&t->context, 0, sizeof(struct context));
t->context.ra = (uint64)func;
// stack grows downward, set sp at the highest stack address in out thread
t->context.sp = (uint64)t->stack + STACK_SIZE;
}
void
thread_yield(void)
{
current_thread->state = RUNNABLE;
thread_schedule();
}
volatile int a_started, b_started, c_started;
volatile int a_n, b_n, c_n;
void
thread_a(void)
{
int i;
printf("thread_a started\n");
a_started = 1;
while(b_started == 0 || c_started == 0)
thread_yield();
for (i = 0; i < 100; i++) {
printf("thread_a %d\n", i);
a_n += 1;
thread_yield();
}
printf("thread_a: exit after %d\n", a_n);
current_thread->state = FREE;
thread_schedule();
}
void
thread_b(void)
{
int i;
printf("thread_b started\n");
b_started = 1;
while(a_started == 0 || c_started == 0)
thread_yield();
for (i = 0; i < 100; i++) {
printf("thread_b %d\n", i);
b_n += 1;
thread_yield();
}
printf("thread_b: exit after %d\n", b_n);
current_thread->state = FREE;
thread_schedule();
}
void
thread_c(void)
{
int i;
printf("thread_c started\n");
c_started = 1;
while(a_started == 0 || b_started == 0)
thread_yield();
for (i = 0; i < 100; i++) {
printf("thread_c %d\n", i);
c_n += 1;
thread_yield();
}
printf("thread_c: exit after %d\n", c_n);
current_thread->state = FREE;
thread_schedule();
}
int
main(int argc, char *argv[])
{
a_started = b_started = c_started = 0;
a_n = b_n = c_n = 0;
thread_init();
thread_create(thread_a);
thread_create(thread_b);
thread_create(thread_c);
current_thread->state = FREE;
thread_schedule();
exit(0);
}
|