summaryrefslogtreecommitdiff
path: root/vm.c
blob: f24d510cfd7a40deaeb8fc4925348a11a288c6ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#include "param.h"
#include "types.h"
#include "defs.h"
#include "x86.h"
#include "mmu.h"
#include "proc.h"
#include "elf.h"

static uint kerntext;  // linear/physical address of start of kernel text
static uint kerntsz;
static uint kerndata;
static uint kerndsz;
static uint kernend;
static uint freesz;
static pde_t *kpgdir;

void
printstack()
{
  uint *ebp = (uint *) rebp();
  uint i;
  cprintf("kernel stack: 0x%x\n", ebp);
  while (ebp) {
    if (ebp < (uint *) kerntext) // don't follow user ebp
      return;
    cprintf("  ebp %x  saved ebp %x eip %x  args", ebp, ebp[0], ebp[1]);
    for (i = 0; i < 4; i++)
      cprintf(" %x", ebp[2+i]);
    cprintf("\n");
    ebp = (uint *) ebp[0];
  }
}

void
printpgdir(pde_t *pgdir)
{
  uint i;
  uint j;

  cprintf("printpgdir 0x%x\n", pgdir);
  for (i = 0; i < NPDENTRIES; i++) {
    if (pgdir[i] != 0 && i < 100) {
      cprintf("pgdir %d, v=0x%x\n", i, pgdir[i]);
      pte_t *pgtab = (pte_t*) PTE_ADDR(pgdir[i]);
      for (j = 0; j < NPTENTRIES; j++) {
	if (pgtab[j] != 0)
	  cprintf("pgtab %d, v=0x%x, addr=0x%x\n", j, PGADDR(i, j, 0), 
		PTE_ADDR(pgtab[j]));
      }
    }
  }
  cprintf("printpgdir done\n", pgdir);
}

static pte_t *
walkpgdir(pde_t *pgdir, const void *va, int create)
{
  uint r;
  pde_t *pde;
  pte_t *pgtab;

  pde = &pgdir[PDX(va)];
  if (*pde & PTE_P) {
    pgtab = (pte_t*) PTE_ADDR(*pde);
  } else if (!create || !(r = (uint) kalloc(PGSIZE)))
    return 0;
  else {
    pgtab = (pte_t*) r;

    // Make sure all those PTE_P bits are zero.
    memset(pgtab, 0, PGSIZE);

    // The permissions here are overly generous, but they can
    // be further restricted by the permissions in the page table 
    // entries, if necessary.
    *pde = PADDR(r) | PTE_P | PTE_W | PTE_U;
  }
  return &pgtab[PTX(va)];
}

static int
mappages(pde_t *pgdir, void *la, uint size, uint pa, int perm, int p)
{
  uint i;
  pte_t *pte;

  if (p) 
    cprintf("mappages: pgdir 0x%x la 0x%x sz %d(0x%x) pa 0x%x, perm 0x%x\n", 
	    pgdir, la, size, size, pa, perm);
  for (i = 0; i < size; i += PGSIZE) {
    if (!(pte = walkpgdir(pgdir, (void*)(la + i), 1)))
      return 0;
    *pte = (pa + i) | perm | PTE_P;
    if (p) cprintf("mappages 0x%x 0x%x pp %d\n", la+i, *pte, PPN(*pte));
  }
  return 1;
}

// Set up CPU's kernel segment descriptors.
// Run once at boot time on each CPU.
void
ksegment(void)
{
  struct cpu *c;

  // Map once virtual addresses to linear addresses using identity map
  c = &cpus[cpunum()];
  c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
  c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
  c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0x0, 0xffffffff, DPL_USER);
  c->gdt[SEG_UDATA] = SEG(STA_W, 0x0, 0xffffffff, DPL_USER);

  // map cpu, and curproc
  c->gdt[SEG_KCPU] = SEG(STA_W, &c->cpu, 8, 0);

  lgdt(c->gdt, sizeof(c->gdt));
  loadgs(SEG_KCPU << 3);
  
  // Initialize cpu-local storage.
  cpu = c;
  proc = 0;
}

// Setup address space and current process task state.
void
loadvm(struct proc *p)
{
  pushcli();

  // Setup TSS
  cpu->gdt[SEG_TSS] = SEG16(STS_T32A, &cpu->ts, sizeof(cpu->ts)-1, 0);
  cpu->gdt[SEG_TSS].s = 0;
  cpu->ts.ss0 = SEG_KDATA << 3;
  cpu->ts.esp0 = (uint)proc->kstack + KSTACKSIZE;
  ltr(SEG_TSS << 3);

  if (p->pgdir == 0)
    panic("loadvm: no pgdir\n");

  lcr3(PADDR(p->pgdir));  // switch to new address space
  popcli();

  // Conservatively flush other processor's TLBs  (XXX lazy--just 2 cpus)
  if (cpu->id == 0) lapic_tlbflush(1);
  else lapic_tlbflush(0);
}

// Setup kernel part of page table. Linear adresses map one-to-one on
// physical addresses.
pde_t*
setupkvm(void)
{
  pde_t *pgdir;

  // Allocate page directory
  if (!(pgdir = (pde_t *) kalloc(PGSIZE)))
    return 0;
  memset(pgdir, 0, PGSIZE);
  // Map IO space from 640K to 1Mbyte
  if (!mappages(pgdir, (void *)0xA0000, 0x60000, 0xA0000, PTE_W, 0))
    return 0;
  // Map kernel text from kern text addr read-only
  if (!mappages(pgdir, (void *) kerntext, kerntsz, kerntext, 0, 0))
    return 0;
  // Map kernel data form kern data addr R/W
  if (!mappages(pgdir, (void *) kerndata, kerndsz, kerndata, PTE_W, 0))
    return 0;
  // Map dynamically-allocated memory read/write (kernel stacks, user mem)
  if (!mappages(pgdir, (void *) kernend, freesz, PADDR(kernend), PTE_W, 0))
    return 0;
  // Map devices such as ioapic, lapic, ...
  if (!mappages(pgdir, (void *)0xFE000000, 0x2000000, 0xFE000000, PTE_W, 0))
    return 0;
  return pgdir;
}

char*
uva2ka(pde_t *pgdir, char *uva)
{    
  pte_t *pte = walkpgdir(pgdir, uva, 0);
  if (pte == 0) return 0;
  uint pa = PTE_ADDR(*pte);
  return (char *)pa;
}

int
allocuvm(pde_t *pgdir, char *addr, uint sz)
{
  uint i, n;
  char *mem;

  n = PGROUNDUP(sz);
  if (addr + n >= 0xA0000)
    return 0;
  for (i = 0; i < n; i += PGSIZE) {
    if (!(mem = kalloc(PGSIZE))) {   // XXX cleanup what we did?
      return 0;
    }
    memset(mem, 0, PGSIZE);
    mappages(pgdir, addr + i, PGSIZE, PADDR(mem), PTE_W|PTE_U, 0);
  }
  return 1;
}

void
freevm(pde_t *pgdir)
{
  uint i, j, da;

  if (!pgdir)
    panic("freevm: no pgdir\n");
  for (i = 0; i < NPDENTRIES; i++) {
    da = PTE_ADDR(pgdir[i]);
    if (da != 0) {
      pte_t *pgtab = (pte_t*) da;
      for (j = 0; j < NPTENTRIES; j++) {
	if (pgtab[j] != 0) {
	  uint pa = PTE_ADDR(pgtab[j]);
	  uint va = PGADDR(i, j, 0);
	  if (va >= 0xA0000)   // done with user part?
	    break;
	  kfree((void *) pa, PGSIZE);
	  pgtab[j] = 0;
	}
      }
      kfree((void *) da, PGSIZE);
      pgdir[i] = 0;
    }
  }
  kfree((void *) pgdir, PGSIZE);
}

int
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
  uint i, pa, n;
  pte_t *pte;

  if ((uint)addr % PGSIZE != 0)
    panic("loaduvm: addr must be page aligned\n");
  for (i = 0; i < sz; i += PGSIZE) {
    if (!(pte = walkpgdir(pgdir, addr+i, 0)))
      panic("loaduvm: address should exist\n");
    pa = PTE_ADDR(*pte);
    if (sz - i < PGSIZE) n = sz - i;
    else n = PGSIZE;
    if(readi(ip, (char *)pa, offset+i, n) != n)
      return 0;
  }
  return 1;
}

void
inituvm(pde_t *pgdir, char *addr, char *init, uint sz)
{
  uint i, pa, n, off;
  pte_t *pte;

  for (i = 0; i < sz; i += PGSIZE) {
    if (!(pte = walkpgdir(pgdir, (void *)(i+addr), 0)))
	panic("inituvm: pte should exist\n");
    off = (i+(uint)addr) % PGSIZE;
    pa = PTE_ADDR(*pte);
    if (sz - i < PGSIZE) n = sz - i;
    else n = PGSIZE;
    memmove((char *)pa+off, init+i, n);
  }
}

pde_t*
copyuvm(pde_t *pgdir, uint sz)
{
  pde_t *d = setupkvm();
  pte_t *pte;
  uint pa, i;
  char *mem;

  if (!d) return 0;
  for (i = 0; i < sz; i += PGSIZE) {
    if (!(pte = walkpgdir(pgdir, (void *)i, 0)))
      panic("copyuvm: pte should exist\n");
    pa = PTE_ADDR(*pte);
    if (!(mem = kalloc(PGSIZE)))
      return 0;
    memmove(mem, (char *)pa, PGSIZE);
    if (!mappages(d, (void *)i, PGSIZE, PADDR(mem), PTE_W|PTE_U, 0))
      return 0;
  }
  return d;
}

void
pminit(void)
{
  extern char end[];
  struct proghdr *ph;
  struct elfhdr *elf = (struct elfhdr*)0x10000;  // scratch space

  if (elf->magic != ELF_MAGIC || elf->phnum != 2)
    panic("pminit: need a text and data segment\n");

  ph = (struct proghdr*)((uchar*)elf + elf->phoff);
  kernend = ((uint)end + PGSIZE) & ~(PGSIZE-1);
  kerntext = ph[0].va;
  kerndata = ph[1].va;
  kerntsz = kerndata - kerntext;
  kerndsz = kernend - kerndata;
  freesz = 0x300000 - kernend;  // XXX no more than 3 Mbyte of phys mem

  cprintf("kerntext@0x%x(sz=0x%x), kerndata@0x%x(sz=0x%x), kernend 0x%x freesz = 0x%x\n", 
	  kerntext, kerntsz, kerndata, kerndsz, kernend, freesz);

  kinit((char *)kernend, freesz);   // XXX should be called once on bootcpu
}

// Jump to mainc on a properly-allocated kernel stack
void
jkstack(void)
{
  char *kstack = kalloc(PGSIZE);
  if (!kstack)
    panic("jkstack\n");
  char *top = kstack + PGSIZE;
  jstack((uint) top);
}

// Allocate one page table for the machine for the kernel address space
void
kvmalloc(void)
{
  kpgdir = setupkvm();
}

// Switch to the kernel page table (used by the scheduler)
void
loadkvm(void)
{
  lcr3(PADDR(kpgdir));
}

void
vminit(void)
{
  uint cr0;

  loadkvm();
  // Turn on paging.
  cr0 = rcr0();
  cr0 |= CR0_PE|CR0_PG|CR0_AM|CR0_WP|CR0_NE|CR0_TS|CR0_EM|CR0_MP;
  cr0 &= ~(CR0_TS|CR0_EM);
  lcr0(cr0);
}