1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
// Physical memory allocator, for user processes,
// kernel stacks, page-table pages,
// and pipe buffers. Allocates whole 4096-byte pages.
#include "types.h"
#include "param.h"
#include "memlayout.h"
#include "spinlock.h"
#include "riscv.h"
#include "defs.h"
// NOTE: leave interrupts disabled to avoid deadlocks & race conditions when using this macro!!!
#define CUR_KMEM (kmem_list[cpuid()])
void freerange(void *pa_start, void *pa_end);
extern char end[]; // first address after kernel.
// defined by kernel.ld.
struct run {
struct run *next;
};
struct kmem {
struct spinlock lock;
struct run *freelist;
};
struct kmem kmem_list[NCPU];
int phypg_refcnt[PHYSTOP/PGSIZE];
struct spinlock refcnt_lock;
// Increase the refcnt
int
refcnt_inc(uint64 pa)
{
acquire(&refcnt_lock);
int *prefcnt = &phypg_refcnt[pa/PGSIZE];
if(pa > PHYSTOP || *prefcnt < 1)
panic("increase refcnt");
(*prefcnt)++;
release(&refcnt_lock);
return *prefcnt;
}
// Decrease the refcnt
int
refcnt_dec(uint64 pa)
{
acquire(&refcnt_lock);
int *prefcnt = &phypg_refcnt[pa/PGSIZE];
if(pa > PHYSTOP || *prefcnt < 1)
panic("decrease refcnt");
(*prefcnt)--;
release(&refcnt_lock);
return *prefcnt;
}
void
kinit()
{
for(int i = 0; i < NCPU; i++){
static char lock_name[8];
snprintf(lock_name, sizeof(lock_name), "kmem.%d", i);
initlock(&kmem_list[i].lock, lock_name);
}
// init all refcnt to 1, which would later be freed to 0 by kfree()
for(uint64 p = PGROUNDUP((uint64)end); p + PGSIZE <= PHYSTOP; p += PGSIZE)
phypg_refcnt[p/PGSIZE] = 1;
initlock(&refcnt_lock, "refcnt");
freerange(end, (void*)PHYSTOP);
}
void
freerange(void *pa_start, void *pa_end)
{
char *p;
p = (char*)PGROUNDUP((uint64)pa_start);
for(; p + PGSIZE <= (char*)pa_end; p += PGSIZE)
kfree(p);
}
// Free the page of physical memory pointed at by pa,
// which normally should have been returned by a
// call to kalloc(). (The exception is when
// initializing the allocator; see kinit above.)
void
kfree(void *pa)
{
struct run *r;
if(((uint64)pa % PGSIZE) != 0 || (char*)pa < end || (uint64)pa >= PHYSTOP)
panic("kfree");
refcnt_dec((uint64)pa);
if(phypg_refcnt[(uint64)pa/PGSIZE] > 0)
// We still have refs to this phy page, do not actually free it
return;
// Fill with junk to catch dangling refs.
memset(pa, 1, PGSIZE);
r = (struct run*)pa;
push_off();
struct kmem *kmem = &CUR_KMEM;
acquire(&kmem->lock);
r->next = kmem->freelist;
kmem->freelist = r;
release(&kmem->lock);
pop_off();
}
// Allocate one 4096-byte page of physical memory.
// Returns a pointer that the kernel can use.
// Returns 0 if the memory cannot be allocated.
void *
kalloc(void)
{
struct run *r;
push_off();
struct kmem *kmem = &CUR_KMEM;
acquire(&kmem->lock);
r = kmem->freelist;
if(r){
acquire(&refcnt_lock);
if(phypg_refcnt[(uint64)r/PGSIZE])
panic("kalloc: invalid refcnt");
phypg_refcnt[(uint64)r/PGSIZE] = 1;
release(&refcnt_lock);
kmem->freelist = r->next;
}
// release the origin lock to avoid deadlocks
release(&kmem->lock);
if(!r){
// try to steal mem from other cpu's kmem
for(int i = 0; i < NCPU; i++){
if(kmem == &kmem_list[i])
continue;
acquire(&kmem_list[i].lock);
struct run *f = kmem_list[i].freelist;
if(f){
r = f;
kmem_list[i].freelist = f->next;
}
if(r){
// acquire the refcnt lock to set refcnt
// lock is a must to prevent refcnt races
acquire(&refcnt_lock);
// release previous lock now
release(&kmem_list[i].lock);
if(phypg_refcnt[(uint64)r/PGSIZE])
panic("kalloc: invalid refcnt");
phypg_refcnt[(uint64)r/PGSIZE] = 1;
release(&refcnt_lock);
break;
}
release(&kmem_list[i].lock);
}
}
if(r)
memset((char*)r, 5, PGSIZE); // fill with junk
pop_off();
return (void*)r;
}
int
get_freemem(void)
{
int n;
struct run *r;
for(int i = 0; i < NCPU; i++){
acquire(&kmem_list[i].lock);
for(n = 0, r = kmem_list[i].freelist; r; r = r->next)
n++;
release(&kmem_list[i].lock);
}
return n * PGSIZE;
}
|